175 research outputs found

    A comparison of the HIPERLAN/2 and IEEE 802.11a wireless LAN standards

    Get PDF

    An Analysis of Electromagnetic Interference (EMI) of Ultra Wideband(UWB) and IEEE 802.11A Wireless Local Area Network (WLAN) Employing Orthogonal Frequency Division Multiplexing (OFDM)

    Get PDF
    Military communications require the rapid deployment of mobile, high-bandwidth systems. These systems must provide anytime, anywhere capabilities with minimal interference to existing military, private, and commercial communications. Ultra Wideband (UWB) technology is being advanced as the next generation radio technology and has the potential to revolutionize indoor wireless communications. The ability of UWB to mitigate multipath fading, provide high-throughput data rates (e.g., greater than 100 Mbps), provide excellent signal penetration (e.g., through walls), and low implementation costs makes it an ideal technology for a wide range of private and public sector applications. Preliminary UWB studies conducted by The Institute for Telecommunications Science (ITS) and the Defense Advanced Research Projects Agency (DARPA) have discovered that potential exists for harmful interference to occur. While these studies have provided initial performance estimates, the interference effects of UWB transmissions on coexisting spectral users are largely unknown. This research characterizes the electromagnetic interference (EMI) effects of UWB on the throughput performance of an IEEE 802.11a ad-hoc network. Radiated measurements in an anechoic chamber investigate interference performance using three modulation schemes (BPSK, BPPM, and OOK) and four pulse repetition frequencies over two Unlicensed National Information Infrastructure (U-NII) channels. Results indicate that OOK and BPPM can degrade throughput performance by up to 20% at lower pulse repetition frequencies (PRFs) in lower U-NII channels. Minimal performance degradation (less than one percent) due to interference was observed for BPSK at the lower PRFs and higher U-NII channels

    Fourth Generation Wireless Systems: Requirements and Challenges for the Next Frontier

    Get PDF
    Fourth generation wireless systems (4G) are likely to reach the consumer market in another 4-5 years. 4G comes with the promise of increased bandwidth, higher speeds, greater interoperability across communication protocols, and user friendly, innovative, and secure applications. In this article, I list the requirements of the 4G systems by considering the needs of the users in the future. These requirements can be met if technical and business challenges can be overcome. Technical challenges include mobility management, quality of service, interoperability, high data rate, security, survivability, spectrum, intelligent mobile devices, middleware, and network access. I discuss the most plausible solutions to these technical challenges in this paper. Business-related challenges include billing, payment methods, pricing, size of investments, content provision and mediation, and the trade-off between richness and reach. If these technical and business challenges can be met, then 4G will become the next frontier in data and voice communication infrastructure

    Enabling Optical Wired and Wireless Technologies for 5G and Beyond Networks

    Get PDF
    The emerging fifth-generation mobile communications are envisaged to support massive number of deployment scenarios based on the respective use case requirements. The requirements can be efficiently attended with ultradense small-cell cloud radio access network (C-RAN) approach. However, the C-RAN architecture imposes stringent requirements on the transport networks. This book chapter presents high-capacity and low-latency optical wired and wireless networking solutions that are capable of attending to the network demands. Meanwhile, with optical communication evolutions, there has been advent of enhanced photonic integrated circuits (PICs). The PICs are capable of offering advantages such as low-power consumption, high-mechanical stability, low footprint, small dimension, enhanced functionalities, and ease of complex system architectures. Consequently, we exploit the PICs capabilities in designing and developing the physical layer architecture of the second standard of the next-generation passive optical network (NG-PON2) system. Apart from being capable of alleviating the associated losses of the transceiver, the proposed architectures aid in increasing the system power budget. Moreover, its implementation can significantly help in reducing the optical-electrical-optical conversions issue and the required number of optical connections, which are part of the main problems being faced in the miniaturization of network elements. Additionally, we present simulation results for the model validation

    Realizing mobile multimedia systems over emerging fourth-generation wireless technologies

    Get PDF
    Thesis (M.Eng.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2001.Includes bibliographical references (p. [161]-167) and index.by Pei-Jeng Kuo.M.Eng

    Spectrum Sharing Methods in Coexisting Wireless Networks

    Get PDF
    Radio spectrum, the fundamental basis for wireless communication, is a finite resource. The development of the expanding range of radio based devices and services in recent years makes the spectrum scarce and hence more costly under the paradigm of extensive regulation for licensing. However, with mature technologies and with their continuous improvements it becomes apparent that tight licensing might no longer be required for all wireless services. This is from where the concept of utilizing the unlicensed bands for wireless communication originates. As a promising step to reduce the substantial cost for radio spectrum, different wireless technology based networks are being deployed to operate in the same spectrum bands, particularly in the unlicensed bands, resulting in coexistence. However, uncoordinated coexistence often leads to cases where collocated wireless systems experience heavy mutual interference. Hence, the development of spectrum sharing rules to mitigate the interference among wireless systems is a significant challenge considering the uncoordinated, heterogeneous systems. The requirement of spectrum sharing rules is tremendously increasing on the one hand to fulfill the current and future demand for wireless communication by the users, and on the other hand, to utilize the spectrum efficiently. In this thesis, contributions are provided towards dynamic and cognitive spectrum sharing with focus on the medium access control (MAC) layer, for uncoordinated scenarios of homogeneous and heterogeneous wireless networks, in a micro scale level, highlighting the QoS support for the applications. This thesis proposes a generic and novel spectrum sharing method based on a hypothesis: The regular channel occupation by one system can support other systems to predict the spectrum opportunities reliably. These opportunities then can be utilized efficiently, resulting in a fair spectrum sharing as well as an improving aggregated performance compared to the case without having special treatment. The developed method, denoted as Regular Channel Access (RCA), is modeled for systems specified by the wireless local resp. metropolitan area network standards IEEE 802.11 resp. 802.16. In the modeling, both systems are explored according to their respective centrally controlled channel access mechanisms and the adapted models are evaluated through simulation and results analysis. The conceptual model of spectrum sharing based on the distributed channel access mechanism of the IEEE 802.11 system is provided as well. To make the RCA method adaptive, the following enabling techniques are developed and integrated in the design: a RSS-based (Received Signal Strength based) detection method for measuring the channel occupation, a pattern recognition based algorithm for system identification, statistical knowledge based estimation for traffic demand estimation and an inference engine for reconfiguration of resource allocation as a response to traffic dynamics. The advantage of the RCA method is demonstrated, in which each competing collocated system is configured to have a resource allocation based on the estimated traffic demand of the systems. The simulation and the analysis of the results show a significant improvement in aggregated throughput, mean delay and packet loss ratio, compared to the case where legacy wireless systems coexists. The results from adaptive RCA show its resilience characteristics in case of dynamic traffic. The maximum achievable throughput between collocated IEEE 802.11 systems applying RCA is provided by means of mathematical calculation. The results of this thesis provide the basis for the development of resource allocation methods for future wireless networks particularly emphasized to operate in current unlicensed bands and in future models of the Open Spectrum Alliance
    • 

    corecore