12,815 research outputs found

    Distributed Regression in Sensor Networks: Training Distributively with Alternating Projections

    Full text link
    Wireless sensor networks (WSNs) have attracted considerable attention in recent years and motivate a host of new challenges for distributed signal processing. The problem of distributed or decentralized estimation has often been considered in the context of parametric models. However, the success of parametric methods is limited by the appropriateness of the strong statistical assumptions made by the models. In this paper, a more flexible nonparametric model for distributed regression is considered that is applicable in a variety of WSN applications including field estimation. Here, starting with the standard regularized kernel least-squares estimator, a message-passing algorithm for distributed estimation in WSNs is derived. The algorithm can be viewed as an instantiation of the successive orthogonal projection (SOP) algorithm. Various practical aspects of the algorithm are discussed and several numerical simulations validate the potential of the approach.Comment: To appear in the Proceedings of the SPIE Conference on Advanced Signal Processing Algorithms, Architectures and Implementations XV, San Diego, CA, July 31 - August 4, 200

    A Simple Flood Forecasting Scheme Using Wireless Sensor Networks

    Full text link
    This paper presents a forecasting model designed using WSNs (Wireless Sensor Networks) to predict flood in rivers using simple and fast calculations to provide real-time results and save the lives of people who may be affected by the flood. Our prediction model uses multiple variable robust linear regression which is easy to understand and simple and cost effective in implementation, is speed efficient, but has low resource utilization and yet provides real time predictions with reliable accuracy, thus having features which are desirable in any real world algorithm. Our prediction model is independent of the number of parameters, i.e. any number of parameters may be added or removed based on the on-site requirements. When the water level rises, we represent it using a polynomial whose nature is used to determine if the water level may exceed the flood line in the near future. We compare our work with a contemporary algorithm to demonstrate our improvements over it. Then we present our simulation results for the predicted water level compared to the actual water level.Comment: 16 pages, 4 figures, published in International Journal Of Ad-Hoc, Sensor And Ubiquitous Computing, February 2012; V. seal et al, 'A Simple Flood Forecasting Scheme Using Wireless Sensor Networks', IJASUC, Feb.201

    Convergence Speed of the Consensus Algorithm with Interference and Sparse Long-Range Connectivity

    Full text link
    We analyze the effect of interference on the convergence rate of average consensus algorithms, which iteratively compute the measurement average by message passing among nodes. It is usually assumed that these algorithms converge faster with a greater exchange of information (i.e., by increased network connectivity) in every iteration. However, when interference is taken into account, it is no longer clear if the rate of convergence increases with network connectivity. We study this problem for randomly-placed consensus-seeking nodes connected through an interference-limited network. We investigate the following questions: (a) How does the rate of convergence vary with increasing communication range of each node? and (b) How does this result change when each node is allowed to communicate with a few selected far-off nodes? When nodes schedule their transmissions to avoid interference, we show that the convergence speed scales with r2dr^{2-d}, where rr is the communication range and dd is the number of dimensions. This scaling is the result of two competing effects when increasing rr: Increased schedule length for interference-free transmission vs. the speed gain due to improved connectivity. Hence, although one-dimensional networks can converge faster from a greater communication range despite increased interference, the two effects exactly offset one another in two-dimensions. In higher dimensions, increasing the communication range can actually degrade the rate of convergence. Our results thus underline the importance of factoring in the effect of interference in the design of distributed estimation algorithms.Comment: 27 pages, 4 figure

    A survey of localization in wireless sensor network

    Get PDF
    Localization is one of the key techniques in wireless sensor network. The location estimation methods can be classified into target/source localization and node self-localization. In target localization, we mainly introduce the energy-based method. Then we investigate the node self-localization methods. Since the widespread adoption of the wireless sensor network, the localization methods are different in various applications. And there are several challenges in some special scenarios. In this paper, we present a comprehensive survey of these challenges: localization in non-line-of-sight, node selection criteria for localization in energy-constrained network, scheduling the sensor node to optimize the tradeoff between localization performance and energy consumption, cooperative node localization, and localization algorithm in heterogeneous network. Finally, we introduce the evaluation criteria for localization in wireless sensor network

    Distributed Kernel Regression: An Algorithm for Training Collaboratively

    Full text link
    This paper addresses the problem of distributed learning under communication constraints, motivated by distributed signal processing in wireless sensor networks and data mining with distributed databases. After formalizing a general model for distributed learning, an algorithm for collaboratively training regularized kernel least-squares regression estimators is derived. Noting that the algorithm can be viewed as an application of successive orthogonal projection algorithms, its convergence properties are investigated and the statistical behavior of the estimator is discussed in a simplified theoretical setting.Comment: To be presented at the 2006 IEEE Information Theory Workshop, Punta del Este, Uruguay, March 13-17, 200

    RSSI-Based Self-Localization with Perturbed Anchor Positions

    Full text link
    We consider the problem of self-localization by a resource-constrained mobile node given perturbed anchor position information and distance estimates from the anchor nodes. We consider normally-distributed noise in anchor position information. The distance estimates are based on the log-normal shadowing path-loss model for the RSSI measurements. The available solutions to this problem are based on complex and iterative optimization techniques such as semidefinite programming or second-order cone programming, which are not suitable for resource-constrained environments. In this paper, we propose a closed-form weighted least-squares solution. We calculate the weights by taking into account the statistical properties of the perturbations in both RSSI and anchor position information. We also estimate the bias of the proposed solution and subtract it from the proposed solution. We evaluate the performance of the proposed algorithm considering a set of arbitrary network topologies in comparison to an existing algorithm that is based on a similar approach but only accounts for perturbations in the RSSI measurements. We also compare the results with the corresponding Cramer-Rao lower bound. Our experimental evaluation shows that the proposed algorithm can substantially improve the localization performance in terms of both root mean square error and bias.Comment: Accepted for publication in 28th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE PIMRC 2017
    corecore