5,169 research outputs found

    Generalized Fast-Convolution-based Filtered-OFDM: Techniques and Application to 5G New Radio

    Get PDF
    This paper proposes a generalized model and methods for fast-convolution (FC)-based waveform generation and processing with specific applications to fifth generation new radio (5G-NR). Following the progress of 5G-NR standardization in 3rd generation partnership project (3GPP), the main focus is on subband-filtered cyclic prefix (CP) orthogonal frequency-division multiplexing (OFDM) processing with specific emphasis on spectrally well localized transmitter processing. Subband filtering is able to suppress the interference leakage between adjacent subbands, thus supporting different numerologies for so-called bandwidth parts as well as asynchronous multiple access. The proposed generalized FC scheme effectively combines overlapped block processing with time- and frequency-domain windowing to provide highly selective subband filtering with very low intrinsic interference level. Jointly optimized multi-window designs with different allocation sizes and design parameters are compared in terms of interference levels and implementation complexity. The proposed methods are shown to clearly outperform the existing state-of-the-art windowing and filtering-based methods.Comment: To appear in IEEE Transactions on Signal Processin

    Compressive Sensing Theory for Optical Systems Described by a Continuous Model

    Full text link
    A brief survey of the author and collaborators' work in compressive sensing applications to continuous imaging models.Comment: Chapter 3 of "Optical Compressive Imaging" edited by Adrian Stern published by Taylor & Francis 201

    Robust ℋ2 Performance: Guaranteeing Margins for LQG Regulators

    Get PDF
    This paper shows that ℋ2 (LQG) performance specifications can be combined with structured uncertainty in the system, yielding robustness analysis conditions of the same nature and computational complexity as the corresponding conditions for ℋ∞ performance. These conditions are convex feasibility tests in terms of Linear Matrix Inequalities, and can be proven to be necessary and sufficient under the same conditions as in the ℋ∞ case. With these results, the tools of robust control can be viewed as coming full circle to treat the problem where it all began: guaranteeing margins for LQG regulators

    Data-driven modeling and complexity reduction for nonlinear systems with stability guarantees

    Get PDF

    Studies in Signal Processing Techniques for Speech Enhancement: A comparative study

    Get PDF
    Speech enhancement is very essential to suppress the background noise and to increase speech intelligibility and reduce fatigue in hearing. There exist many simple speech enhancement algorithms like spectral subtraction to complex algorithms like Bayesian Magnitude estimators based on Minimum Mean Square Error (MMSE) and its variants. A continuous research is going and new algorithms are emerging to enhance speech signal recorded in the background of environment such as industries, vehicles and aircraft cockpit. In aviation industries speech enhancement plays a vital role to bring crucial information from pilot’s conversation in case of an incident or accident by suppressing engine and other cockpit instrument noises. In this work proposed is a new approach to speech enhancement making use harmonic wavelet transform and Bayesian estimators. The performance indicators, SNR and listening confirms to the fact that newly modified algorithms using harmonic wavelet transform indeed show better results than currently existing methods. Further, the Harmonic Wavelet Transform is computationally efficient and simple to implement due to its inbuilt decimation-interpolation operations compared to those of filter-bank approach to realize sub-bands

    Analytic function methods for nonparametric control

    Get PDF
    This thesis develops and investigates analytic function methods for nonparametric analysis and design of robust control linear systems. Compared to the parametric approaches, nonparametric approaches may enable the designer to directly use the experimental plant data to design the controller. Nonparametric approaches are potentially more accurate than parametric approaches since they do not need to make significant approximations due to parametric fittings. Moreover, since no parametric identification is required, nonparametric approaches are able to cope with time-delayed and differential difference systems. The design procedure process may also require less human judgement and so may be quicker and more readily automated. In this thesis, nonparametric approaches to control based on H-infinity analytic function theory is presented. It is the main purpose of this thesis to investigate the use of analytic function methods in H-infinity control problems. The implementation of the analytic methods and their applications are both addressed in the thesis
    corecore