4,813 research outputs found

    Algebraic foundations for qualitative calculi and networks

    Full text link
    A qualitative representation ϕ\phi is like an ordinary representation of a relation algebra, but instead of requiring (a;b)ϕ=aϕbϕ(a; b)^\phi = a^\phi | b^\phi, as we do for ordinary representations, we only require that cϕaϕbϕ    ca;bc^\phi\supseteq a^\phi | b^\phi \iff c\geq a ; b, for each cc in the algebra. A constraint network is qualitatively satisfiable if its nodes can be mapped to elements of a qualitative representation, preserving the constraints. If a constraint network is satisfiable then it is clearly qualitatively satisfiable, but the converse can fail. However, for a wide range of relation algebras including the point algebra, the Allen Interval Algebra, RCC8 and many others, a network is satisfiable if and only if it is qualitatively satisfiable. Unlike ordinary composition, the weak composition arising from qualitative representations need not be associative, so we can generalise by considering network satisfaction problems over non-associative algebras. We prove that computationally, qualitative representations have many advantages over ordinary representations: whereas many finite relation algebras have only infinite representations, every finite qualitatively representable algebra has a finite qualitative representation; the representability problem for (the atom structures of) finite non-associative algebras is NP-complete; the network satisfaction problem over a finite qualitatively representable algebra is always in NP; the validity of equations over qualitative representations is co-NP-complete. On the other hand we prove that there is no finite axiomatisation of the class of qualitatively representable algebras.Comment: 22 page

    Bayesian Poisson process partition calculus with an application to Bayesian L\'evy moving averages

    Full text link
    This article develops, and describes how to use, results concerning disintegrations of Poisson random measures. These results are fashioned as simple tools that can be tailor-made to address inferential questions arising in a wide range of Bayesian nonparametric and spatial statistical models. The Poisson disintegration method is based on the formal statement of two results concerning a Laplace functional change of measure and a Poisson Palm/Fubini calculus in terms of random partitions of the integers {1,...,n}. The techniques are analogous to, but much more general than, techniques for the Dirichlet process and weighted gamma process developed in [Ann. Statist. 12 (1984) 351-357] and [Ann. Inst. Statist. Math. 41 (1989) 227-245]. In order to illustrate the flexibility of the approach, large classes of random probability measures and random hazards or intensities which can be expressed as functionals of Poisson random measures are described. We describe a unified posterior analysis of classes of discrete random probability which identifies and exploits features common to all these models. The analysis circumvents many of the difficult issues involved in Bayesian nonparametric calculus, including a combinatorial component. This allows one to focus on the unique features of each process which are characterized via real valued functions h. The applicability of the technique is further illustrated by obtaining explicit posterior expressions for L\'evy-Cox moving average processes within the general setting of multiplicative intensity models.Comment: Published at http://dx.doi.org/10.1214/009053605000000336 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Infinite-body optimal transport with Coulomb Cost

    Get PDF
    We introduce and analyze symmetric infinite-body optimal transport (OT) problems with cost function of pair potential form. We show that for a natural class of such costs, the optimizer is given by the independent product measure all of whose factors are given by the one-body marginal. This is in striking contrast to standard finite-body OT problems, in which the optimizers are typically highly correlated, as well as to infinite-body OT problems with Gangbo-Swiech cost. Moreover, by adapting a construction from the study of exchangeable processes in probability theory, we prove that the corresponding NN-body OT problem is well approximated by the infinite-body problem. To our class belongs the Coulomb cost which arises in many-electron quantum mechanics. The optimal cost of the Coulombic N-body OT problem as a function of the one-body marginal density is known in the physics and quantum chemistry literature under the name SCE functional, and arises naturally as the semiclassical limit of the celebrated Hohenberg-Kohn functional. Our results imply that in the inhomogeneous high-density limit (i.e. NN\to\infty with arbitrary fixed inhomogeneity profile ρ/N\rho/N), the SCE functional converges to the mean field functional. We also present reformulations of the infinite-body and N-body OT problems as two-body OT problems with representability constraints and give a dual characterization of representable two-body measures which parallels an analogous result by Kummer on quantum representability of two-body density matrices.Comment: 22 pages, significant revision

    The p-adic analytic space of pseudocharacters of a profinite group and pseudorepresentations over arbitrary rings

    Full text link
    Let G be a profinite group which is topologically finitely generated, p a prime number and d an integer. We show that the functor from rigid analytic spaces over Q_p to sets, which associates to a rigid space Y the set of continuous d-dimensional pseudocharacters G -> O(Y), is representable by a quasi-Stein rigid analytic space X, and we study its general properties. Our main tool is a theory of "determinants" extending the one of pseudocharacters but which works over an arbitrary base ring; an independent aim of this paper is to expose the main facts of this theory. The moduli space X is constructed as the generic fiber of the moduli formal scheme of continuous formal determinants on G of dimension d. As an application to number theory, this provides a framework to study the generic fibers of pseudodeformation rings (e.g. of Galois representations), especially in the "residually reducible" case, and including when p <= d.Comment: 56 pages. v2 : final version, to appear in the Proceedings of the LMS Durham Symposium "Automorphic forms and Galois representations" (2011

    Towards a Law of Invariance in Human Concept Learning

    Get PDF
    Invariance principles underlie many key theories in modern science. They provide the explanatory and predictive framework necessary for the rigorous study of natural phenomena ranging from the structure of crystals, to magnetism, to relativistic mechanics. Vigo (2008, 2009)introduced a new general notion and principle of invariance from which two parameter-free (ratio and exponential) models were derived to account for human conceptual behavior. Here we introduce a new parameterized \ud exponential “law” based on the same invariance principle. The law accurately predicts the subjective degree of difficulty that humans experience when learning different types of concepts. In addition, it precisely fits the data from a large-scale experiment which examined a total of 84 category structures across 10 category families (R-Squared =.97, p < .0001; r= .98, p < .0001). Moreover, it overcomes seven key challenges that had, hitherto, been grave obstacles for theories of concept learning
    corecore