3,522 research outputs found

    IR-UWB for multiple-access with differential-detection receiver

    Get PDF
    Impulse-Radio Ultra-Wideband (IR-UWB) emerged as a new wireless technology because of its unique characteristics. Such characteristics are the ability to support rich-multimedia applications over short-ranges, the ability to share the available spectrum among multi-users, and the ability to design less complex transceivers for wireless communication systems functioning based on this technology. In this thesis a novel noncoherent IR-UWB receiver designed to support multiple-access is proposed. The transmitter of the proposed system employs the noncoherent bit-level differential phase-shift keying modulation combined with direct-sequence code division multiple-access. The system is investigated under the effect of the additive white Gaussian noise with multiple-access channel. The receiver implements bit-level differential-detection to recover information bits. Closed-form expression for the average probability of error in the proposed receiver while considering the channel effects is analytically derived. This receiver is compared against another existing coherent receiver in terms of bit error rate performance to confirm its practicality. The proposed receiver is characterized by its simple design requirements and its multiple-access efficiency

    A 1-bit Synchronization Algorithm for a Reduced Complexity Energy Detection UWB Receiver

    Get PDF
    This work investigates the possibility of performing synchronization in a reduced complexity Energy Detection receiver. A new receiver scheme employing a single comparator only is defined and the related synchronization algorithm is presented. The possibility of synchronizing has been analyzed both for an idealized Dirac Delta input signal and for realistic UWB signals obtained through the TG4a channel model. The matlab simulations show that it is possible to obtain coarse synchronization using a simple maximum detection algorithm computed on collected energies for the ideal case of Dirac Delta pulses. For realistic UWB signals better synchronization performances are possible by employing a searchback algorithm. Due to the low complexity of the receiver scheme, the synchronization algorithm requires a long locking time

    A Belief Propagation Based Framework for Soft Multiple-Symbol Differential Detection

    Full text link
    Soft noncoherent detection, which relies on calculating the \textit{a posteriori} probabilities (APPs) of the bits transmitted with no channel estimation, is imperative for achieving excellent detection performance in high-dimensional wireless communications. In this paper, a high-performance belief propagation (BP)-based soft multiple-symbol differential detection (MSDD) framework, dubbed BP-MSDD, is proposed with its illustrative application in differential space-time block-code (DSTBC)-aided ultra-wideband impulse radio (UWB-IR) systems. Firstly, we revisit the signal sampling with the aid of a trellis structure and decompose the trellis into multiple subtrellises. Furthermore, we derive an APP calculation algorithm, in which the forward-and-backward message passing mechanism of BP operates on the subtrellises. The proposed BP-MSDD is capable of significantly outperforming the conventional hard-decision MSDDs. However, the computational complexity of the BP-MSDD increases exponentially with the number of MSDD trellis states. To circumvent this excessive complexity for practical implementations, we reformulate the BP-MSDD, and additionally propose a Viterbi algorithm (VA)-based hard-decision MSDD (VA-HMSDD) and a VA-based soft-decision MSDD (VA-SMSDD). Moreover, both the proposed BP-MSDD and VA-SMSDD can be exploited in conjunction with soft channel decoding to obtain powerful iterative detection and decoding based receivers. Simulation results demonstrate the effectiveness of the proposed algorithms in DSTBC-aided UWB-IR systems.Comment: 14 pages, 12 figures, 3 tables, accepted to appear on IEEE Transactions on Wireless Communications, Aug. 201

    Implementation Aspects of a Transmitted-Reference UWB Receiver

    Get PDF
    In this paper, we discuss the design issues of an ultra wide band (UWB) receiver targeting a single-chip CMOS implementation for low data-rate applications like ad hoc wireless sensor networks. A non-coherent transmitted reference (TR) receiver is chosen because of its small complexity compared to other architectures. After a brief recapitulation of the UWB fundamentals and a short discussion on the major differences between coherent and non-coherent receivers, we discuss issues, challenges and possible design solutions. Several simulation results obtained by means of a behavioral model are presented, together with an analysis of the trade-off between performance and complexity in an integrated circuit implementation

    An effective AMS Top-Down Methodology Applied to the Design of a Mixed-SignalUWB System-on-Chip

    Get PDF
    The design of Ultra Wideband (UWB) mixed-signal SoC for localization applications in wireless personal area networks is currently investigated by several researchers. The complexity of the design claims for effective top-down methodologies. We propose a layered approach based on VHDL-AMS for the first design stages and on an intelligent use of a circuit-level simulator for the transistor-level phase. We apply the latter just to one block at a time and wrap it within the system-level VHDL-AMS description. This method allows to capture the impact of circuit-level design choices and non-idealities on system performance. To demonstrate the effectiveness of the methodology we show how the refinement of the design affects specific UWB system parameters such as bit-error rate and localization estimations
    • …
    corecore