5 research outputs found

    A deterministic approximation algorithm for computing the permanent of a 0, 1 matrix

    Get PDF
    We consider the problem of computing the permanent of a n by n matrix. For a class of matrices corresponding to constant degree expanders we construct a deterministic polynomial time approximation algorithm to within a multiplicative factor ( 1 + ∈)[superscript η] for arbitrary∈ > 0. This is an improvement over the best known approximation factor e[superscript η] obtained in Linial, Samorodnitsky and Wigderson (2000), though the latter result was established for arbitrary non-negative matrices. Our results use a recently developed deterministic approximation algorithm for counting partial matchings of a graph (Bayati, Gamarnik, Katz, Nair and Tetali (2007)) and Jerrum–Vazirani method (Jerrum and Vazirani (1996)) of approximating permanent by near perfect matchings

    Computing the permanent of (some) complex matrices

    Full text link
    We present a deterministic algorithm, which, for any given 0< epsilon < 1 and an nxn real or complex matrix A=(a_{ij}) such that | a_{ij}-1| < 0.19 for all i, j computes the permanent of A within relative error epsilon in n^{O(ln n -ln epsilon)} time. The method can be extended to computing hafnians and multidimensional permanents.Comment: 12 pages, results extended to hafnians and multidimensional permanents, minor improvement

    Sublinear-Time Algorithms for Monomer-Dimer Systems on Bounded Degree Graphs

    Full text link
    For a graph GG, let Z(G,λ)Z(G,\lambda) be the partition function of the monomer-dimer system defined by ∑kmk(G)λk\sum_k m_k(G)\lambda^k, where mk(G)m_k(G) is the number of matchings of size kk in GG. We consider graphs of bounded degree and develop a sublinear-time algorithm for estimating log⁥Z(G,λ)\log Z(G,\lambda) at an arbitrary value λ>0\lambda>0 within additive error Ï”n\epsilon n with high probability. The query complexity of our algorithm does not depend on the size of GG and is polynomial in 1/Ï”1/\epsilon, and we also provide a lower bound quadratic in 1/Ï”1/\epsilon for this problem. This is the first analysis of a sublinear-time approximation algorithm for a # P-complete problem. Our approach is based on the correlation decay of the Gibbs distribution associated with Z(G,λ)Z(G,\lambda). We show that our algorithm approximates the probability for a vertex to be covered by a matching, sampled according to this Gibbs distribution, in a near-optimal sublinear time. We extend our results to approximate the average size and the entropy of such a matching within an additive error with high probability, where again the query complexity is polynomial in 1/Ï”1/\epsilon and the lower bound is quadratic in 1/Ï”1/\epsilon. Our algorithms are simple to implement and of practical use when dealing with massive datasets. Our results extend to other systems where the correlation decay is known to hold as for the independent set problem up to the critical activity
    corecore