54,365 research outputs found

    SCANN: Synthesis of Compact and Accurate Neural Networks

    Full text link
    Deep neural networks (DNNs) have become the driving force behind recent artificial intelligence (AI) research. An important problem with implementing a neural network is the design of its architecture. Typically, such an architecture is obtained manually by exploring its hyperparameter space and kept fixed during training. This approach is time-consuming and inefficient. Another issue is that modern neural networks often contain millions of parameters, whereas many applications and devices require small inference models. However, efforts to migrate DNNs to such devices typically entail a significant loss of classification accuracy. To address these challenges, we propose a two-step neural network synthesis methodology, called DR+SCANN, that combines two complementary approaches to design compact and accurate DNNs. At the core of our framework is the SCANN methodology that uses three basic architecture-changing operations, namely connection growth, neuron growth, and connection pruning, to synthesize feed-forward architectures with arbitrary structure. SCANN encapsulates three synthesis methodologies that apply a repeated grow-and-prune paradigm to three architectural starting points. DR+SCANN combines the SCANN methodology with dataset dimensionality reduction to alleviate the curse of dimensionality. We demonstrate the efficacy of SCANN and DR+SCANN on various image and non-image datasets. We evaluate SCANN on MNIST and ImageNet benchmarks. In addition, we also evaluate the efficacy of using dimensionality reduction alongside SCANN (DR+SCANN) on nine small to medium-size datasets. We also show that our synthesis methodology yields neural networks that are much better at navigating the accuracy vs. energy efficiency space. This would enable neural network-based inference even on Internet-of-Things sensors.Comment: 13 pages, 8 figure

    HiHGNN: Accelerating HGNNs through Parallelism and Data Reusability Exploitation

    Full text link
    Heterogeneous graph neural networks (HGNNs) have emerged as powerful algorithms for processing heterogeneous graphs (HetGs), widely used in many critical fields. To capture both structural and semantic information in HetGs, HGNNs first aggregate the neighboring feature vectors for each vertex in each semantic graph and then fuse the aggregated results across all semantic graphs for each vertex. Unfortunately, existing graph neural network accelerators are ill-suited to accelerate HGNNs. This is because they fail to efficiently tackle the specific execution patterns and exploit the high-degree parallelism as well as data reusability inside and across the processing of semantic graphs in HGNNs. In this work, we first quantitatively characterize a set of representative HGNN models on GPU to disclose the execution bound of each stage, inter-semantic-graph parallelism, and inter-semantic-graph data reusability in HGNNs. Guided by our findings, we propose a high-performance HGNN accelerator, HiHGNN, to alleviate the execution bound and exploit the newfound parallelism and data reusability in HGNNs. Specifically, we first propose a bound-aware stage-fusion methodology that tailors to HGNN acceleration, to fuse and pipeline the execution stages being aware of their execution bounds. Second, we design an independency-aware parallel execution design to exploit the inter-semantic-graph parallelism. Finally, we present a similarity-aware execution scheduling to exploit the inter-semantic-graph data reusability. Compared to the state-of-the-art software framework running on NVIDIA GPU T4 and GPU A100, HiHGNN respectively achieves an average 41.5×\times and 8.6×\times speedup as well as 106×\times and 73×\times energy efficiency with quarter the memory bandwidth of GPU A100

    Towards Accurate and High-Speed Spiking Neuromorphic Systems with Data Quantization-Aware Deep Networks

    Full text link
    Deep Neural Networks (DNNs) have gained immense success in cognitive applications and greatly pushed today's artificial intelligence forward. The biggest challenge in executing DNNs is their extremely data-extensive computations. The computing efficiency in speed and energy is constrained when traditional computing platforms are employed in such computational hungry executions. Spiking neuromorphic computing (SNC) has been widely investigated in deep networks implementation own to their high efficiency in computation and communication. However, weights and signals of DNNs are required to be quantized when deploying the DNNs on the SNC, which results in unacceptable accuracy loss. %However, the system accuracy is limited by quantizing data directly in deep networks deployment. Previous works mainly focus on weights discretize while inter-layer signals are mainly neglected. In this work, we propose to represent DNNs with fixed integer inter-layer signals and fixed-point weights while holding good accuracy. We implement the proposed DNNs on the memristor-based SNC system as a deployment example. With 4-bit data representation, our results show that the accuracy loss can be controlled within 0.02% (2.3%) on MNIST (CIFAR-10). Compared with the 8-bit dynamic fixed-point DNNs, our system can achieve more than 9.8x speedup, 89.1% energy saving, and 30% area saving.Comment: 6 pages, 4 figure
    • …
    corecore