52,443 research outputs found

    A history and future of Web APIs

    Get PDF

    Towards a Formal Framework for Mobile, Service-Oriented Sensor-Actuator Networks

    Full text link
    Service-oriented sensor-actuator networks (SOSANETs) are deployed in health-critical applications like patient monitoring and have to fulfill strong safety requirements. However, a framework for the rigorous formal modeling and analysis of SOSANETs does not exist. In particular, there is currently no support for the verification of correct network behavior after node failure or loss/addition of communication links. To overcome this problem, we propose a formal framework for SOSANETs. The main idea is to base our framework on the \pi-calculus, a formally defined, compositional and well-established formalism. We choose KLAIM, an existing formal language based on the \pi-calculus as the foundation for our framework. With that, we are able to formally model SOSANETs with possible topology changes and network failures. This provides the basis for our future work on prediction, analysis and verification of the network behavior of these systems. Furthermore, we illustrate the real-life applicability of this approach by modeling and extending a use case scenario from the medical domain.Comment: In Proceedings FESCA 2013, arXiv:1302.478

    Simulation of Mixed Critical In-vehicular Networks

    Full text link
    Future automotive applications ranging from advanced driver assistance to autonomous driving will largely increase demands on in-vehicular networks. Data flows of high bandwidth or low latency requirements, but in particular many additional communication relations will introduce a new level of complexity to the in-car communication system. It is expected that future communication backbones which interconnect sensors and actuators with ECU in cars will be built on Ethernet technologies. However, signalling from different application domains demands for network services of tailored attributes, including real-time transmission protocols as defined in the TSN Ethernet extensions. These QoS constraints will increase network complexity even further. Event-based simulation is a key technology to master the challenges of an in-car network design. This chapter introduces the domain-specific aspects and simulation models for in-vehicular networks and presents an overview of the car-centric network design process. Starting from a domain specific description language, we cover the corresponding simulation models with their workflows and apply our approach to a related case study for an in-car network of a premium car

    A Flexible and Secure Deployment Framework for Distributed Applications

    Get PDF
    This paper describes an implemented system which is designed to support the deployment of applications offering distributed services, comprising a number of distributed components. This is achieved by creating high level placement and topology descriptions which drive tools that deploy applications consisting of components running on multiple hosts. The system addresses issues of heterogeneity by providing abstractions over host-specific attributes yielding a homogeneous run-time environment into which components may be deployed. The run-time environments provide secure binding mechanisms that permit deployed components to bind to stored data and services on the hosts on which they are running.Comment: 2nd International Working Conference on Component Deployment (CD 2004), Edinburgh, Scotlan

    Can Component/Service-Based Systems Be Proved Correct?

    Get PDF
    Component-oriented and service-oriented approaches have gained a strong enthusiasm in industries and academia with a particular interest for service-oriented approaches. A component is a software entity with given functionalities, made available by a provider, and used to build other application within which it is integrated. The service concept and its use in web-based application development have a huge impact on reuse practices. Accordingly a considerable part of software architectures is influenced; these architectures are moving towards service-oriented architectures. Therefore applications (re)use services that are available elsewhere and many applications interact, without knowing each other, using services available via service servers and their published interfaces and functionalities. Industries propose, through various consortium, languages, technologies and standards. More academic works are also undertaken concerning semantics and formalisation of components and service-based systems. We consider here both streams of works in order to raise research concerns that will help in building quality software. Are there new challenging problems with respect to service-based software construction? Besides, what are the links and the advances compared to distributed systems?Comment: 16 page
    • …
    corecore