4 research outputs found

    An Upper Bound on Multi-hop Transmission Capacity with Dynamic Routing Selection

    Full text link
    This paper develops upper bounds on the end-to-end transmission capacity of multi-hop wireless networks. Potential source-destination paths are dynamically selected from a pool of randomly located relays, from which a closed-form lower bound on the outage probability is derived in terms of the expected number of potential paths. This is in turn used to provide an upper bound on the number of successful transmissions that can occur per unit area, which is known as the transmission capacity. The upper bound results from assuming independence among the potential paths, and can be viewed as the maximum diversity case. A useful aspect of the upper bound is its simple form for an arbitrary-sized network, which allows insights into how the number of hops and other network parameters affect spatial throughput in the non-asymptotic regime. The outage probability analysis is then extended to account for retransmissions with a maximum number of allowed attempts. In contrast to prevailing wisdom, we show that predetermined routing (such as nearest-neighbor) is suboptimal, since more hops are not useful once the network is interference-limited. Our results also make clear that randomness in the location of relay sets and dynamically varying channel states is helpful in obtaining higher aggregate throughput, and that dynamic route selection should be used to exploit path diversity.Comment: 14 pages, 5 figures, accepted to IEEE Transactions on Information Theory, 201

    A delay-minimizing routing strategy for wireless multi-hop networks

    No full text
    We consider a network where each route comprises a backlogged source, a number of relays and a destination at a finite distance. The locations of the sources and the relays are realizations of independent Poisson point processes. Given that the nodes observe a TDMA/ALOHA MAC protocol, our objective is to determine the number of relays and their placement such that the mean end-to-end delay in a typical route of the network is minimized. We first study an idealistic network model where all routes have the same number of hops, the same distance per hop and their own dedicated relays. Combining tools from queueing theory and stochastic geometry, we provide a precise characterization of the mean end-to-end delay. We find that the delay is minimized if the first hop is much longer than the remaining hops and that the optimal number of hops scales sublinearly with the source-destination distance. Simulating the original network scenario reveals that the analytical results are accurate, provided that the density of the relay process is sufficiently large. We conclude that, given the considered MAC protocol, our analysis provides a delay-minimizing routing strategy for random, multihop networks involving a small number of hops
    corecore