1,397 research outputs found

    Dense 3D Face Correspondence

    Full text link
    We present an algorithm that automatically establishes dense correspondences between a large number of 3D faces. Starting from automatically detected sparse correspondences on the outer boundary of 3D faces, the algorithm triangulates existing correspondences and expands them iteratively by matching points of distinctive surface curvature along the triangle edges. After exhausting keypoint matches, further correspondences are established by generating evenly distributed points within triangles by evolving level set geodesic curves from the centroids of large triangles. A deformable model (K3DM) is constructed from the dense corresponded faces and an algorithm is proposed for morphing the K3DM to fit unseen faces. This algorithm iterates between rigid alignment of an unseen face followed by regularized morphing of the deformable model. We have extensively evaluated the proposed algorithms on synthetic data and real 3D faces from the FRGCv2, Bosphorus, BU3DFE and UND Ear databases using quantitative and qualitative benchmarks. Our algorithm achieved dense correspondences with a mean localisation error of 1.28mm on synthetic faces and detected 1414 anthropometric landmarks on unseen real faces from the FRGCv2 database with 3mm precision. Furthermore, our deformable model fitting algorithm achieved 98.5% face recognition accuracy on the FRGCv2 and 98.6% on Bosphorus database. Our dense model is also able to generalize to unseen datasets.Comment: 24 Pages, 12 Figures, 6 Tables and 3 Algorithm

    Maximized Posteriori Attributes Selection from Facial Salient Landmarks for Face Recognition

    Full text link
    This paper presents a robust and dynamic face recognition technique based on the extraction and matching of devised probabilistic graphs drawn on SIFT features related to independent face areas. The face matching strategy is based on matching individual salient facial graph characterized by SIFT features as connected to facial landmarks such as the eyes and the mouth. In order to reduce the face matching errors, the Dempster-Shafer decision theory is applied to fuse the individual matching scores obtained from each pair of salient facial features. The proposed algorithm is evaluated with the ORL and the IITK face databases. The experimental results demonstrate the effectiveness and potential of the proposed face recognition technique also in case of partially occluded faces.Comment: 8 pages, 2 figure
    • …
    corecore