849 research outputs found

    4D Seismic History Matching Incorporating Unsupervised Learning

    Full text link
    The work discussed and presented in this paper focuses on the history matching of reservoirs by integrating 4D seismic data into the inversion process using machine learning techniques. A new integrated scheme for the reconstruction of petrophysical properties with a modified Ensemble Smoother with Multiple Data Assimilation (ES-MDA) in a synthetic reservoir is proposed. The permeability field inside the reservoir is parametrised with an unsupervised learning approach, namely K-means with Singular Value Decomposition (K-SVD). This is combined with the Orthogonal Matching Pursuit (OMP) technique which is very typical for sparsity promoting regularisation schemes. Moreover, seismic attributes, in particular, acoustic impedance, are parametrised with the Discrete Cosine Transform (DCT). This novel combination of techniques from machine learning, sparsity regularisation, seismic imaging and history matching aims to address the ill-posedness of the inversion of historical production data efficiently using ES-MDA. In the numerical experiments provided, I demonstrate that these sparse representations of the petrophysical properties and the seismic attributes enables to obtain better production data matches to the true production data and to quantify the propagating waterfront better compared to more traditional methods that do not use comparable parametrisation techniques

    Surrogate Model for Geological CO2 Storage and Its Use in MCMC-based History Matching

    Full text link
    Deep-learning-based surrogate models show great promise for use in geological carbon storage operations. In this work we target an important application - the history matching of storage systems characterized by a high degree of (prior) geological uncertainty. Toward this goal, we extend the recently introduced recurrent R-U-Net surrogate model to treat geomodel realizations drawn from a wide range of geological scenarios. These scenarios are defined by a set of metaparameters, which include the mean and standard deviation of log-permeability, permeability anisotropy ratio, horizontal correlation length, etc. An infinite number of realizations can be generated for each set of metaparameters, so the range of prior uncertainty is large. The surrogate model is trained with flow simulation results, generated using the open-source simulator GEOS, for 2000 random realizations. The flow problems involve four wells, each injecting 1 Mt CO2/year, for 30 years. The trained surrogate model is shown to provide accurate predictions for new realizations over the full range of geological scenarios, with median relative error of 1.3% in pressure and 4.5% in saturation. The surrogate model is incorporated into a Markov chain Monte Carlo history matching workflow, where the goal is to generate history matched realizations and posterior estimates of the metaparameters. We show that, using observed data from monitoring wells in synthetic `true' models, geological uncertainty is reduced substantially. This leads to posterior 3D pressure and saturation fields that display much closer agreement with the true-model responses than do prior predictions

    Optimizing Carbon Storage Operations for Long-Term Safety

    Full text link
    To combat global warming and mitigate the risks associated with climate change, carbon capture and storage (CCS) has emerged as a crucial technology. However, safely sequestering CO2 in geological formations for long-term storage presents several challenges. In this study, we address these issues by modeling the decision-making process for carbon storage operations as a partially observable Markov decision process (POMDP). We solve the POMDP using belief state planning to optimize injector and monitoring well locations, with the goal of maximizing stored CO2 while maintaining safety. Empirical results in simulation demonstrate that our approach is effective in ensuring safe long-term carbon storage operations. We showcase the flexibility of our approach by introducing three different monitoring strategies and examining their impact on decision quality. Additionally, we introduce a neural network surrogate model for the POMDP decision-making process to handle the complex dynamics of the multi-phase flow. We also investigate the effects of different fidelity levels of the surrogate model on decision qualities

    Graph Convolutional Networks for Simulating Multi-phase Flow and Transport in Porous Media

    Full text link
    Numerical simulation of multi-phase fluid dynamics in porous media is critical for many subsurface applications. Data-driven surrogate modeling provides computationally inexpensive alternatives to high-fidelity numerical simulators. While the commonly used convolutional neural networks (CNNs) are powerful in approximating partial differential equation solutions, it remains challenging for CNNs to handle irregular and unstructured simulation meshes. However, subsurface simulation models often involve unstructured meshes with complex mesh geometries, which limits the application of CNNs. To address this challenge, here we construct surrogate models based on Graph Convolutional Networks (GCNs) to approximate the spatial-temporal solutions of multi-phase flow and transport processes. We propose a new GCN architecture suited to the hyperbolic character of the coupled PDE system, to better capture the saturation dynamics. Results of 2D heterogeneous test cases show that our surrogates predict the evolutions of the pressure and saturation states with high accuracy, and the predicted rollouts remain stable for multiple timesteps. Moreover, the GCN-based models generalize well to irregular domain geometries and unstructured meshes that are unseen in the training dataset
    • …
    corecore