2,986 research outputs found

    Human segmentation in surveillance video with deep learning

    Get PDF
    Advanced intelligent surveillance systems are able to automatically analyze video of surveillance data without human intervention. These systems allow high accuracy of human activity recognition and then a high-level activity evaluation. To provide such features, an intelligent surveillance system requires a background subtraction scheme for human segmentation that captures a sequence of images containing moving humans from the reference background image. This paper proposes an alternative approach for human segmentation in videos through the use of a deep convolutional neural network. Two specific datasets were created to train our network, using the shapes of 35 different moving actors arranged on background images related to the area where the camera is located, allowing the network to take advantage of the entire site chosen for video surveillance. To assess the proposed approach, we compare our results with an Adobe Photoshop tool called Select Subject, the conditional generative adversarial network Pix2Pix, and the fully-convolutional model for real-time instance segmentation Yolact. The results show that the main benefit of our method is the possibility to automatically recognize and segment people in videos without constraints on camera and people movements in the scene (Video, code and datasets are available at http://graphics.unibas.it/www/HumanSegmentation/index.md.html)

    BSUV-Net: a fully-convolutional neural network for background subtraction of unseen videos

    Full text link
    Background subtraction is a basic task in computer vision and video processing often applied as a pre-processing step for object tracking, people recognition, etc. Recently, a number of successful background-subtraction algorithms have been proposed, however nearly all of the top-performing ones are supervised. Crucially, their success relies upon the availability of some annotated frames of the test video during training. Consequently, their performance on completely “unseen” videos is undocumented in the literature. In this work, we propose a new, supervised, background subtraction algorithm for unseen videos (BSUV-Net) based on a fully-convolutional neural network. The input to our network consists of the current frame and two background frames captured at different time scales along with their semantic segmentation maps. In order to reduce the chance of overfitting, we also introduce a new data-augmentation technique which mitigates the impact of illumination difference between the background frames and the current frame. On the CDNet-2014 dataset, BSUV-Net outperforms stateof-the-art algorithms evaluated on unseen videos in terms of several metrics including F-measure, recall and precision.Accepted manuscrip

    Video analytics system for surveillance videos

    Get PDF
    Developing an intelligent inspection system that can enhance the public safety is challenging. An efficient video analytics system can help monitor unusual events and mitigate possible damage or loss. This thesis aims to analyze surveillance video data, report abnormal activities and retrieve corresponding video clips. The surveillance video dataset used in this thesis is derived from ALERT Dataset, a collection of surveillance videos at airport security checkpoints. The video analytics system in this thesis can be thought as a pipelined process. The system takes the surveillance video as input, and passes it through a series of processing such as object detection, multi-object tracking, person-bin association and re-identification. In the end, we can obtain trajectories of passengers and baggage in the surveillance videos. Abnormal events like taking away other's belongings will be detected and trigger the alarm automatically. The system could also retrieve the corresponding video clips based on user-defined query
    • …
    corecore