33,451 research outputs found

    Growth of the Brownian forest

    Full text link
    Trees in Brownian excursions have been studied since the late 1980s. Forests in excursions of Brownian motion above its past minimum are a natural extension of this notion. In this paper we study a forest-valued Markov process which describes the growth of the Brownian forest. The key result is a composition rule for binary Galton--Watson forests with i.i.d. exponential branch lengths. We give elementary proofs of this composition rule and explain how it is intimately linked with Williams' decomposition for Brownian motion with drift.Comment: Published at http://dx.doi.org/10.1214/009117905000000422 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Monte Carlo Implementation of Gaussian Process Models for Bayesian Regression and Classification

    Full text link
    Gaussian processes are a natural way of defining prior distributions over functions of one or more input variables. In a simple nonparametric regression problem, where such a function gives the mean of a Gaussian distribution for an observed response, a Gaussian process model can easily be implemented using matrix computations that are feasible for datasets of up to about a thousand cases. Hyperparameters that define the covariance function of the Gaussian process can be sampled using Markov chain methods. Regression models where the noise has a t distribution and logistic or probit models for classification applications can be implemented by sampling as well for latent values underlying the observations. Software is now available that implements these methods using covariance functions with hierarchical parameterizations. Models defined in this way can discover high-level properties of the data, such as which inputs are relevant to predicting the response

    Regenerative Simulation for Queueing Networks with Exponential or Heavier Tail Arrival Distributions

    Full text link
    Multiclass open queueing networks find wide applications in communication, computer and fabrication networks. Often one is interested in steady-state performance measures associated with these networks. Conceptually, under mild conditions, a regenerative structure exists in multiclass networks, making them amenable to regenerative simulation for estimating the steady-state performance measures. However, typically, identification of a regenerative structure in these networks is difficult. A well known exception is when all the interarrival times are exponentially distributed, where the instants corresponding to customer arrivals to an empty network constitute a regenerative structure. In this paper, we consider networks where the interarrival times are generally distributed but have exponential or heavier tails. We show that these distributions can be decomposed into a mixture of sums of independent random variables such that at least one of the components is exponentially distributed. This allows an easily implementable embedded regenerative structure in the Markov process. We show that under mild conditions on the network primitives, the regenerative mean and standard deviation estimators are consistent and satisfy a joint central limit theorem useful for constructing asymptotically valid confidence intervals. We also show that amongst all such interarrival time decompositions, the one with the largest mean exponential component minimizes the asymptotic variance of the standard deviation estimator.Comment: A preliminary version of this paper will appear in Proceedings of Winter Simulation Conference, Washington, DC, 201

    Essential spectrum and Weyl asymptotics for discrete Laplacians

    Full text link
    In this paper, we investigate spectral properties of discrete Laplacians. Our study is based on the Hardy inequality and the use of super-harmonic functions. We recover and improve lower bounds for the bottom of the spectrum and of the essential spectrum. In some situation, we obtain Weyl asymptotics for the eigenvalues. We also provide a probabilistic representation of super-harmonic functions. Using coupling arguments, we set comparison results for the bottom of the spectrum, the bottom of the essential spectrum and the stochastic completeness of different discrete Laplacians. The class of weakly spherically symmetric graphs is also studied in full detail

    On the excursion theory for linear diffusions

    Get PDF
    We present a number of important identities related to the excursion theory of linear diffusions. In particular, excursions straddling an independent exponential time are studied in detail. Letting the parameter of the exponential time tend to zero it is seen that these results connect to the corresponding results for excursions of stationary diffusions (in stationary state). We characterize also the laws of the diffusion prior and posterior to the last zero before the exponential time. It is proved using Krein's representations that, e.g., the law of the length of the excursion straddling an exponential time is infinitely divisible. As an illustration of the results we discuss Ornstein-Uhlenbeck processes
    • …
    corecore