127,584 research outputs found

    A data mining approach to face detection [J

    Get PDF
    a b s t r a c t In this paper, we propose a novel face detection method based on the MAFIA algorithm. Our proposed method consists of two phases, namely, training and detection. In the training phase, we first apply Sobel's edge detection operator, morphological operator, and thresholding to each training image, and transform it into an edge image. Next, we use the MAFIA algorithm to mine the maximal frequent patterns from those edge images and obtain the positive feature pattern. Similarly, we can obtain the negative feature pattern from the complements of edge images. Based on the feature patterns mined, we construct a face detector to prune non-face candidates. In the detection phase, we apply a sliding window to the testing image in different scales. For each sliding window, if the slide window passes the face detector, it is considered as a human face. The proposed method can automatically find the feature patterns that capture most of facial features. By using the feature patterns to construct a face detector, the proposed method is robust to races, illumination, and facial expressions. The experimental results show that the proposed method has outstanding performance in the MIT-CMU dataset and comparable performance in the BioID dataset in terms of false positive and detection rate

    Fused Classification For Differential Face Morphing Detection

    Full text link
    Face morphing, a sophisticated presentation attack technique, poses significant security risks to face recognition systems. Traditional methods struggle to detect morphing attacks, which involve blending multiple face images to create a synthetic image that can match different individuals. In this paper, we focus on the differential detection of face morphing and propose an extended approach based on fused classification method for no-reference scenario. We introduce a public face morphing detection benchmark for the differential scenario and utilize a specific data mining technique to enhance the performance of our approach. Experimental results demonstrate the effectiveness of our method in detecting morphing attacks.Comment: 8 pages, 3 figures, 2 table

    Interpretable Graph Anomaly Detection using Gradient Attention Maps

    Full text link
    Detecting unusual patterns in graph data is a crucial task in data mining. However, existing methods often face challenges in consistently achieving satisfactory performance and lack interpretability, which hinders our understanding of anomaly detection decisions. In this paper, we propose a novel approach to graph anomaly detection that leverages the power of interpretability to enhance performance. Specifically, our method extracts an attention map derived from gradients of graph neural networks, which serves as a basis for scoring anomalies. In addition, we conduct theoretical analysis using synthetic data to validate our method and gain insights into its decision-making process. To demonstrate the effectiveness of our method, we extensively evaluate our approach against state-of-the-art graph anomaly detection techniques. The results consistently demonstrate the superior performance of our method compared to the baselines

    Fast and Exact Outlier Detection in Metric Spaces: A Proximity Graph-based Approach

    Full text link
    Distance-based outlier detection is widely adopted in many fields, e.g., data mining and machine learning, because it is unsupervised, can be employed in a generic metric space, and does not have any assumptions of data distributions. Data mining and machine learning applications face a challenge of dealing with large datasets, which requires efficient distance-based outlier detection algorithms. Due to the popularization of computational environments with large memory, it is possible to build a main-memory index and detect outliers based on it, which is a promising solution for fast distance-based outlier detection. Motivated by this observation, we propose a novel approach that exploits a proximity graph. Our approach can employ an arbitrary proximity graph and obtains a significant speed-up against state-of-the-art. However, designing an effective proximity graph raises a challenge, because existing proximity graphs do not consider efficient traversal for distance-based outlier detection. To overcome this challenge, we propose a novel proximity graph, MRPG. Our empirical study using real datasets demonstrates that MRPG detects outliers significantly faster than the state-of-the-art algorithms

    Try with Simpler -- An Evaluation of Improved Principal Component Analysis in Log-based Anomaly Detection

    Full text link
    The rapid growth of deep learning (DL) has spurred interest in enhancing log-based anomaly detection. This approach aims to extract meaning from log events (log message templates) and develop advanced DL models for anomaly detection. However, these DL methods face challenges like heavy reliance on training data, labels, and computational resources due to model complexity. In contrast, traditional machine learning and data mining techniques are less data-dependent and more efficient but less effective than DL. To make log-based anomaly detection more practical, the goal is to enhance traditional techniques to match DL's effectiveness. Previous research in a different domain (linking questions on Stack Overflow) suggests that optimized traditional techniques can rival state-of-the-art DL methods. Drawing inspiration from this concept, we conducted an empirical study. We optimized the unsupervised PCA (Principal Component Analysis), a traditional technique, by incorporating lightweight semantic-based log representation. This addresses the issue of unseen log events in training data, enhancing log representation. Our study compared seven log-based anomaly detection methods, including four DL-based, two traditional, and the optimized PCA technique, using public and industrial datasets. Results indicate that the optimized unsupervised PCA technique achieves similar effectiveness to advanced supervised/semi-supervised DL methods while being more stable with limited training data and resource-efficient. This demonstrates the adaptability and strength of traditional techniques through small yet impactful adaptations

    Dynamic adversarial mining - effectively applying machine learning in adversarial non-stationary environments.

    Get PDF
    While understanding of machine learning and data mining is still in its budding stages, the engineering applications of the same has found immense acceptance and success. Cybersecurity applications such as intrusion detection systems, spam filtering, and CAPTCHA authentication, have all begun adopting machine learning as a viable technique to deal with large scale adversarial activity. However, the naive usage of machine learning in an adversarial setting is prone to reverse engineering and evasion attacks, as most of these techniques were designed primarily for a static setting. The security domain is a dynamic landscape, with an ongoing never ending arms race between the system designer and the attackers. Any solution designed for such a domain needs to take into account an active adversary and needs to evolve over time, in the face of emerging threats. We term this as the ‘Dynamic Adversarial Mining’ problem, and the presented work provides the foundation for this new interdisciplinary area of research, at the crossroads of Machine Learning, Cybersecurity, and Streaming Data Mining. We start with a white hat analysis of the vulnerabilities of classification systems to exploratory attack. The proposed ‘Seed-Explore-Exploit’ framework provides characterization and modeling of attacks, ranging from simple random evasion attacks to sophisticated reverse engineering. It is observed that, even systems having prediction accuracy close to 100%, can be easily evaded with more than 90% precision. This evasion can be performed without any information about the underlying classifier, training dataset, or the domain of application. Attacks on machine learning systems cause the data to exhibit non stationarity (i.e., the training and the testing data have different distributions). It is necessary to detect these changes in distribution, called concept drift, as they could cause the prediction performance of the model to degrade over time. However, the detection cannot overly rely on labeled data to compute performance explicitly and monitor a drop, as labeling is expensive and time consuming, and at times may not be a possibility altogether. As such, we propose the ‘Margin Density Drift Detection (MD3)’ algorithm, which can reliably detect concept drift from unlabeled data only. MD3 provides high detection accuracy with a low false alarm rate, making it suitable for cybersecurity applications; where excessive false alarms are expensive and can lead to loss of trust in the warning system. Additionally, MD3 is designed as a classifier independent and streaming algorithm for usage in a variety of continuous never-ending learning systems. We then propose a ‘Dynamic Adversarial Mining’ based learning framework, for learning in non-stationary and adversarial environments, which provides ‘security by design’. The proposed ‘Predict-Detect’ classifier framework, aims to provide: robustness against attacks, ease of attack detection using unlabeled data, and swift recovery from attacks. Ideas of feature hiding and obfuscation of feature importance are proposed as strategies to enhance the learning framework\u27s security. Metrics for evaluating the dynamic security of a system and recover-ability after an attack are introduced to provide a practical way of measuring efficacy of dynamic security strategies. The framework is developed as a streaming data methodology, capable of continually functioning with limited supervision and effectively responding to adversarial dynamics. The developed ideas, methodology, algorithms, and experimental analysis, aim to provide a foundation for future work in the area of ‘Dynamic Adversarial Mining’, wherein a holistic approach to machine learning based security is motivated
    • …
    corecore