1 research outputs found

    A Cyclic Pursuit Framework for Networked Mobile Agents Based on Vector Field Approach

    Get PDF
    This paper proposes a pursuit formation control scheme for a network of double-integrator mobile agents based on a vector field approach. In a leaderless architecture, each agent pursues another one via a cyclic topology to achieve a regular polygon formation. On the other hand, the agents are exposed to a rotational vector field such that they rotate around the vector field centroid, while they keep the regular polygon formation. The main problem of existing approaches in the literature for cyclic pursuit of double-integrator multiagent systems is that under those approaches, the swarm angular velocity and centroid are not controllable based on missions and agents capabilities. However, by employing the proposed vector field approach in this paper, while keeping a regular polygon formation, the swarm angular velocity and centroid can be determined arbitrary. The obtained results can be extended to achieve elliptical formations with cyclic pursuit as well. Simulation results for a team of eight mobile agents verify the accuracy of the proposed control scheme
    corecore