5 research outputs found

    Delta Networks for Optimized Recurrent Network Computation

    Full text link
    Many neural networks exhibit stability in their activation patterns over time in response to inputs from sensors operating under real-world conditions. By capitalizing on this property of natural signals, we propose a Recurrent Neural Network (RNN) architecture called a delta network in which each neuron transmits its value only when the change in its activation exceeds a threshold. The execution of RNNs as delta networks is attractive because their states must be stored and fetched at every timestep, unlike in convolutional neural networks (CNNs). We show that a naive run-time delta network implementation offers modest improvements on the number of memory accesses and computes, but optimized training techniques confer higher accuracy at higher speedup. With these optimizations, we demonstrate a 9X reduction in cost with negligible loss of accuracy for the TIDIGITS audio digit recognition benchmark. Similarly, on the large Wall Street Journal speech recognition benchmark even existing networks can be greatly accelerated as delta networks, and a 5.7x improvement with negligible loss of accuracy can be obtained through training. Finally, on an end-to-end CNN trained for steering angle prediction in a driving dataset, the RNN cost can be reduced by a substantial 100X

    Brain-informed speech separation (BISS) for enhancement of target speaker in multitalker speech perception

    Full text link
    Hearing-impaired people often struggle to follow the speech stream of an individual talker in noisy environments. Recent studies show that the brain tracks attended speech and that the attended talker can be decoded from neural data on a single-trial level. This raises the possibility of “neuro-steered” hearing devices in which the brain-decoded intention of a hearing-impaired listener is used to enhance the voice of the attended speaker from a speech separation front-end. So far, methods that use this paradigm have focused on optimizing the brain decoding and the acoustic speech separation independently. In this work, we propose a novel framework called brain-informed speech separation (BISS)1 in which the information about the attended speech, as decoded from the subject’s brain, is directly used to perform speech separation in the front-end. We present a deep learning model that uses neural data to extract the clean audio signal that a listener is attending to from a multi-talker speech mixture. We show that the framework can be applied successfully to the decoded output from either invasive intracranial electroencephalography (iEEG) or non-invasive electroencephalography (EEG) recordings from hearing-impaired subjects. It also results in improved speech separation, even in scenes with background noise. The generalization capability of the system renders it a perfect candidate for neuro-steered hearing-assistive devices

    A Curriculum Learning Method for Improved Noise Robustness in Automatic Speech Recognition

    Full text link
    The performance of automatic speech recognition systems under noisy environments still leaves room for improvement. Speech enhancement or feature enhancement techniques for increasing noise robustness of these systems usually add components to the recognition system that need careful optimization. In this work, we propose the use of a relatively simple curriculum training strategy called accordion annealing (ACCAN). It uses a multi-stage training schedule where samples at signal-to-noise ratio (SNR) values as low as 0dB are first added and samples at increasing higher SNR values are gradually added up to an SNR value of 50dB. We also use a method called per-epoch noise mixing (PEM) that generates noisy training samples online during training and thus enables dynamically changing the SNR of our training data. Both the ACCAN and the PEM methods are evaluated on a end-to-end speech recognition pipeline on the Wall Street Journal corpus. ACCAN decreases the average word error rate (WER) on the 20dB to -10dB SNR range by up to 31.4% when compared to a conventional multi-condition training method
    corecore