194,754 research outputs found

    Efficient Database Generation for Data-driven Security Assessment of Power Systems

    Full text link
    Power system security assessment methods require large datasets of operating points to train or test their performance. As historical data often contain limited number of abnormal situations, simulation data are necessary to accurately determine the security boundary. Generating such a database is an extremely demanding task, which becomes intractable even for small system sizes. This paper proposes a modular and highly scalable algorithm for computationally efficient database generation. Using convex relaxation techniques and complex network theory, we discard large infeasible regions and drastically reduce the search space. We explore the remaining space by a highly parallelizable algorithm and substantially decrease computation time. Our method accommodates numerous definitions of power system security. Here we focus on the combination of N-k security and small-signal stability. Demonstrating our algorithm on IEEE 14-bus and NESTA 162-bus systems, we show how it outperforms existing approaches requiring less than 10% of the time other methods require.Comment: Database publicly available at: https://github.com/johnnyDEDK/OPs_Nesta162Bus - Paper accepted for publication at IEEE Transactions on Power System

    Passivity Enforcement via Perturbation of Hamiltonian Matrices

    Get PDF
    This paper presents a new technique for the passivity enforcement of linear time-invariant multiport systems in statespace form. This technique is based on a study of the spectral properties of related Hamiltonian matrices. The formulation is applicable in case the system input-output transfer function is in admittance, impedance, hybrid, or scattering form. A standard test for passivity is first performed by checking the existence of imaginary eigenvalues of the associated Hamiltonian matrix. In the presence of imaginary eigenvalues the system is not passive. In such a case, a new result based on first-order perturbation theory is presented for the precise characterization of the frequency bands where passivity violations occur. This characterization is then used for the design of an iterative perturbation scheme of the state matrices, aimed at the displacement of the imaginary eigenvalues of the Hamiltonian matrix. The result is an effective algorithm leading to the compensation of the passivity violations. This procedure is very efficient when the passivity violations are small, so that first-order perturbation is applicable. Several examples illustrate and validate the procedure

    Fast Algorithm for N-2 Contingency Problem

    Get PDF
    We present a novel selection algorithm for N-2 contingency analysis problem. The algorithm is based on the iterative bounding of line outage distribution factors and successive pruning of the set of contingency pair candidates. The selection procedure is non-heuristic, and is certified to identify all events that lead to thermal constraints violations in DC approximation. The complexity of the algorithm is O(N^2) comparable to the complexity of N-1 contingency problem. We validate and test the algorithm on the Polish grid network with around 3000 lines. For this test case two iterations of the pruning procedure reduce the total number of candidate pairs by a factor of almost 1000 from 5 millions line pairs to only 6128.Comment: HICC
    corecore