4 research outputs found

    Utilizing building information modelling in the tax assessment process of apartment buildings

    Get PDF
    The increasing demand for vertical residential development, particularly in urban areas, contributes to regional income growth through the collection of building taxes. In Indonesia, the vertical building is one of the non-standard objects applying an individual tax building assessment based on the building component cost list (BCCL) table in determining the value of the payable tax. However, the existing assessment system still cannot show the actual value of the building due to its limitations. Consequently, the building tax assessment process is ineffective and inefficient regarding assessment time and value accuracy. The increasing demand for vertical residential development, particularly in urban areas, contributes to regional income growth through the collection of building taxes. In Indonesia, the vertical building is one of the non-standard objects applying an individual tax building assessment based on the building component cost list (BCCL) table in determining the value of the payable tax. However, the existing assessment system still cannot show the actual value of the building due to its limitations. Consequently, the building tax assessment process is ineffective and inefficient regarding assessment time and value accuracy. This study investigates the utilization of Building Information Modelling (BIM) in the assessment process of building taxation, considering a high-rise apartment building in Indonesia as the case study. The findings show that compared to the existing system, the final building value used as the basis in the tax assessment can be generated more accurately, involving a detailed calculation of dimensions and variations of building materials. It can be concluded that BIM’s capability to recognize building objects, extract quantity, and calculate automatically can help improve the objectivity of the assessment results and time efficiency in the tax assessment process

    CadaSPACE: A Cloud Based Platform for a low - cost 3D visualization of property rights available in a 2D cadastral registry. An example for urban multi – storey buildings

    Get PDF
    This paper presents a methodology for a low – cost 3D visualization of property rights in multi – storey urban buildings using available and other relevant open geometric and legal data. An online, free platform is created, named “CadaSPACE”, to support the homogenous visualization of volumetric property units and open property rights included in 2D cadaster. The platform is directly interconnected with open – access pages such as the National Cadastral Portal, Autodesk Online Viewer, Tandem, Google Earth and Online 3D Viewer. It offers a wide range of statistical tools such as tables and diagrams to present, filter and manage the sematic information of the 3D property volumes. An application is presented for the Greek Cadaster. Legal information about the property rights is collected from the open - access cadastral records; building footprints are digitized on the available Orthophotos; architectural floor plans of each individual property unit are either taken from the documents included in the electronic building identity records (under construction) or are provided by the owners, and an approximate BIM (Building Information Model) is created for each building using additional approximate geometric information derived from Google Earth Pro and Streetview. The 3D property units are modelled and visualized as volumes. The whole 3D neighborhood model is uploaded online for further categorization and management through various visual and semantic filters. Considerations for further legal and technical improvements are given towards the implementation of the proposed methodology

    Three dimensional compact abstract cell complexes topological data structure for buildings in CityGML

    Get PDF
    As the significance of visualising objects in three dimensional is now recognised, most city modelling approaches support 3D primitives in the construction (3D) of objects and visualisation. Although the visualisation of city models is in 3D, the topological information maintained remains in two dimensional (2D). This hinders the 3D model to serve its full potential, as the topological information that gives meaning to the objects is not preserved explicitly. The support of 3D topology is crucial for 3D spatial analysis that requires connectivity information and adjacencies in order to produce accurate output in 3D. This research investigates the implementation of a 3D topological model specifically using the Compact Abstract Cell Complexes (CACC) topological data structure for preserving the topological information of buildings in City Geographic Markup Language (CityGML). As the international standard for city modelling, the topological component of CityGML is in 2D via the simple topology-incidence. The use of the simple topology-incidence mechanism within CityGML allows only explicitly stored surfaces can be referenced. This then brings up the issue of inconsistent visualisation which is usually resolved by modelling the two buildings with two separate surfaces representing the common surface. However, the connectivity information between the two connected buildings are not preserved in CityGML as they do not share the same explicitly stored surface. Three objectives were established for the study namely to determine the specifications of a topological data structure for preserving topological information of buildings in CityGML, to implement a topological structure for buildings in CityGML that supports connectivity queries and adjacency analyses for city modelling, and to validate the proposed topological data structure in terms of geometric and topological properties in comparison to the existing CityGML topology mechanism. Several tasks were carried out to complete this research, including extraction of geometrical properties from CityGML, generation of topological links, adjacency analysis using topological information, and visualisation of 3D model and adjacency analysis results. The absence of a comprehensive topological model within CityGML made it necessary to use the geometric properties of the buildings in CityGML as a stand-in model to extract the topological properties that would subsequently be the basis for generating topological links. The CACC topological model preserves topological information by building topological links where points are connected to build alpha-0 links (1D lines), alpha-0 links are connected to build alpha-1 links (2D surfaces), alpha-1 links are connected to build alpha-2 links (3D volumes) and alpha-3 links represent the connectivity between 3D buildings. This allows connectivity between elements of different dimension as any link can be decomposed to its related lower dimension elements. Next, by implementing CACC topological model, the connectivity information for two buildings that are connected but modelled with two separate surfaces can be preserved. The support of topological information via the CACC topological model also allows the seamless execution of adjacency queries between building elements, including elements of different dimensions
    corecore