26,981 research outputs found

    Some Comments on Multigrid Methods for Computing Propagators

    Full text link
    I make three conceptual points regarding multigrid methods for computing propagators in lattice gauge theory: 1) The class of operators handled by the algorithm must be stable under coarsening. 2) Problems related by symmetry should have solution methods related by symmetry. 3) It is crucial to distinguish the vector space VV from its dual space V∗V^*. All the existing algorithms violate one or more of these principles.Comment: 16 pages, LaTeX plus subeqnarray.sty (included at end), NYU-TH-93/07/0

    Dissipation scales and anomalous sinks in steady two-dimensional turbulence

    Get PDF
    In previous papers I have argued that the \emph{fusion rules hypothesis}, which was originally introduced by L'vov and Procaccia in the context of the problem of three-dimensional turbulence, can be used to gain a deeper insight in understanding the enstrophy cascade and inverse energy cascade of two-dimensional turbulence. In the present paper we show that the fusion rules hypothesis, combined with \emph{non-perturbative locality}, itself a consequence of the fusion rules hypothesis, dictates the location of the boundary separating the inertial range from the dissipation range. In so doing, the hypothesis that there may be an anomalous enstrophy sink at small scales and an anomalous energy sink at large scales emerges as a consequence of the fusion rules hypothesis. More broadly, we illustrate the significance of viewing inertial ranges as multi-dimensional regions where the fully unfused generalized structure functions of the velocity field are self-similar, by considering, in this paper, the simplified projection of such regions in a two-dimensional space, involving a small scale rr and a large scale RR, which we call, in this paper, the (r,R)(r, R)-plane. We see, for example, that the logarithmic correction in the enstrophy cascade, under standard molecular dissipation, plays an essential role in inflating the inertial range in the (r,R)(r, R) plane to ensure the possibility of local interactions. We have also seen that increasingly higher orders of hyperdiffusion at large scales or hypodiffusion at small scales make the predicted sink anomalies more resilient to possible violations of the fusion rules hypothesis.Comment: 22 pages, resubmitted to Phys. Rev.

    Dynamical density-matrix renormalization-group method

    Full text link
    I present a density-matrix renormalization-group (DMRG) method for calculating dynamical properties and excited states in low-dimensional lattice quantum many-body systems. The method is based on an exact variational principle for dynamical correlation functions and the excited states contributing to them. This dynamical DMRG is an alternate formulation of the correction vector DMRG but is both simpler and more accurate. The finite-size scaling of spectral functions is discussed and a method for analyzing the scaling of dense spectra is described. The key idea of the method is a size-dependent broadening of the spectrum.The dynamical DMRG and the finite-size scaling analysis are demonstrated on the optical conductivity of the one-dimensional Peierls-Hubbard model. Comparisons with analytical results show that the spectral functions of infinite systems can be reproduced almost exactly with these techniques. The optical conductivity of the Mott-Peierls insulator is investigated and it is shown that its spectrum is qualitatively different from the simple spectra observed in Peierls (band) insulators and one-dimensional Mott-Hubbard insulators.Comment: 16 pages (REVTEX 4.0), 10 figures (in 13 EPS files

    Ehrenfest regularization of Hamiltonian systems

    Full text link
    Imagine a freely rotating rigid body. The body has three principal axes of rotation. It follows from mathematical analysis of the evolution equations that pure rotations around the major and minor axes are stable while rotation around the middle axis is unstable. However, only rotation around the major axis (with highest moment of inertia) is stable in physical reality (as demonstrated by the unexpected change of rotation of the Explorer 1 probe). We propose a general method of Ehrenfest regularization of Hamiltonian equations by which the reversible Hamiltonian equations are equipped with irreversible terms constructed from the Hamiltonian dynamics itself. The method is demonstrated on harmonic oscillator, rigid body motion (solving the problem of stable minor axis rotation), ideal fluid mechanics and kinetic theory. In particular, the regularization can be seen as a birth of irreversibility and dissipation. In addition, we discuss and propose discretizations of the Ehrenfest regularized evolution equations such that key model characteristics (behavior of energy and entropy) are valid in the numerical scheme as well
    • …
    corecore