2 research outputs found

    Strategic opportunities for product-agnostic remanufacturing

    Get PDF
    Purpose There is now much emphasis in both research and practice on the principles of circular economies. In this paper remanufacturing is examined as a key enabler of circular practices, and the concept of “Product-Agnostic Manufacturing” (PAR) is proposed. This work differentiates PAR from many traditional approaches to remanufacturing by virtue of PAR's treatment of product variety. Most existing approaches to remanufacturing feature low variety and standardisation; this study instead suggests that the exploitation of flexibilities in both operations and supply chains leads to new competitive strategies for firms to exploit. Design/methodology/approach This is a conceptual study that builds on a thorough exploration of contemporary remanufacturing literature in the development of the new PAR concept. Findings Through a detailed literature review it is shown that there are a range of benefits, challenges, and critical success factors that underpin the remanufacturing concept. Building on this understanding and bridging literature in operations flexibility and supply chain design, a detailed discussion on the nature of PAR is provided, and an agenda for future research developed. Originality/value Whilst there has been much literature on remanufacturing, there is a general tendency to treat supply chain and remanufacturing operations quite distinctly in individual articles. Additionally, there has been little consideration of multi-product remanufacturing, and for the limited studies where this is done, the emphasis is typically on problem avoidance. This study aims to provide a detailed insight into the developed PAR concept, showing how the remanufacture of a wide range of product varieties may be achieved through flexible operations and supply chain design

    Concurrent Product and Supply Chain Architecture Design Considering Modularity and Sustainability

    Full text link
    Since sustainability is a growing concern, businesses aim to integrate sustainability principles and practices into product and supply chain (SC) architecture (SCA) design. Modular product architecture (MPA) is essential for meeting sustainability demands, as it defines detachable modules by selecting appropriate components from various potential combinations. However, the prevailing practice of MPA emphasizes architectural aspects over interface complexity and design production processes for the structural dimension, potentially impending manufacturing, assembly/disassembly, and recovery efficiency. Most MPA has been developed assuming equal and/or fixed relations among modules rather than configuring for SC effectiveness. Therefore, such methods cannot offer guidance on modular granularity and its impact on product and SCA sustainability. Additionally, there is no comparative assessment of MPA to determine whether the components within the configured modules could share multiple facilities to achieve economic benefits and be effective for modular manufacture and upgrade. Therefore, existing modular configuration fails to link modularization drivers and metrics with SCA, hampering economic design, modular recycling, and efficient assembly/disassembly for enhancing sustainability. This study focuses on the study of design fundamentals and implementation of sustainable modular drivers in coordination with SCA by developing a mathematical model. Here, the architectural and interface relations between components are quantified and captured in a decision structure matrix which acts as the foundation of modular clustering for MPA. Again, unlike previous design approaches focused only on cost, the proposed work considers facility sharing through a competitive analysis of commonality and cost. It also evaluates MPA's ease of disassembly and upgradeability by a comparative assessment of different MPA to enhance SCA sustainability. The primary focus is concurrently managing the interdependency between MPA and SCA by developing mathematical models. Consistent with the mathematical model, this thesis also proposes better solution approaches. In summary, the proposed methods provide a foundation for modeling the link between product design and SC to 1) demonstrate how sustainable modular drivers affect the sustainability performance, 2) evaluate the contribution of modularity to the reduction of assembly/disassembly complexity and cost, 3) develop MPA in coordination with SC modularity by trading off modular granularity, commonality, and cost, and 4) identify a sustainable product family for combined modularity considering the similarity of operations, ease of disassembly and upgradability in SCA. Using metaheuristic algorithms, case studies on refrigerators showed that MPA and its methodology profoundly impact SCA sustainability. It reveals that interactions between components with levels based on sustainable modular drivers should be linked with modular granularity for SCA sustainability. Another key takeaway is that instead of solely focusing on cost, facility sharing and ensuring ease of disassembly and upgradeability can help to reap sustainability benefits
    corecore