22,090 research outputs found

    A Message Passing Strategy for Decentralized Connectivity Maintenance in Agent Removal

    Full text link
    In a multi-agent system, agents coordinate to achieve global tasks through local communications. Coordination usually requires sufficient information flow, which is usually depicted by the connectivity of the communication network. In a networked system, removal of some agents may cause a disconnection. In order to maintain connectivity in agent removal, one can design a robust network topology that tolerates a finite number of agent losses, and/or develop a control strategy that recovers connectivity. This paper proposes a decentralized control scheme based on a sequence of replacements, each of which occurs between an agent and one of its immediate neighbors. The replacements always end with an agent, whose relocation does not cause a disconnection. We show that such an agent can be reached by a local rule utilizing only some local information available in agents' immediate neighborhoods. As such, the proposed message passing strategy guarantees the connectivity maintenance in arbitrary agent removal. Furthermore, we significantly improve the optimality of the proposed scheme by incorporating δ\delta-criticality (i.e. the criticality of an agent in its δ\delta-neighborhood).Comment: 9 pages, 9 figure

    Decentralized Multi-Subgroup Formation Control With Connectivity Preservation and Collision Avoidance

    Get PDF
    This paper proposes a formation control algorithm to create separated multiple formations for an undirected networked multi-agent system while preserving the network connectivity and avoiding collision among agents. Through the modified multi-consensus technique, the proposed algorithm can simultaneously divide a group of multiple agents into any arbitrary number of desired formations in a decentralized manner. Furthermore, the agents assigned to each formation group can be easily reallocated to other formation groups without network topological constraints as long as the entire network is initially connected; an operator can freely partition agents even if there is no spanning tree within each subgroup. Besides, the system can avoid collision without loosing the connectivity even during the transient period of formation by applying the existing potential function based on the network connectivity estimation. If the estimation is correct, the potential function not only guarantees the connectivity maintenance but also allows some extra edges to be broken if the network remains connected. Numerical simulations are performed to verify the feasibility and performance of the proposed multi-subgroup formation control

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future
    corecore