16,178 research outputs found

    Convergent adaptive hybrid higher-order schemes for convex minimization

    Get PDF
    This paper proposes two convergent adaptive mesh-refining algorithms for the hybrid high-order method in convex minimization problems with two-sided p-growth. Examples include the p-Laplacian, an optimal design problem in topology optimization, and the convexified double-well problem. The hybrid high-order method utilizes a gradient reconstruction in the space of piecewise Raviart-Thomas finite element functions without stabilization on triangulations into simplices or in the space of piecewise polynomials with stabilization on polytopal meshes. The main results imply the convergence of the energy and, under further convexity properties, of the approximations of the primal resp. dual variable. Numerical experiments illustrate an efficient approximation of singular minimizers and improved convergence rates for higher polynomial degrees. Computer simulations provide striking numerical evidence that an adopted adaptive HHO algorithm can overcome the Lavrentiev gap phenomenon even with empirical higher convergence rates

    Reconstruction of shapes and refractive indices from backscattering experimental data using the adaptivity

    Full text link
    We consider the inverse problem of the reconstruction of the spatially distributed dielectric constant $\varepsilon_{r}\left(\mathbf{x}\right), \ \mathbf{x}\in \mathbb{R}^{3},whichisanunknowncoefficientintheMaxwellsequations,fromtimedependentbackscatteringexperimentalradardataassociatedwithasinglesourceofelectricpulses.Therefractiveindexis, which is an unknown coefficient in the Maxwell's equations, from time-dependent backscattering experimental radar data associated with a single source of electric pulses. The refractive index is n\left(\mathbf{x}\right) =\sqrt{\varepsilon_{r}\left(\mathbf{x}\right)}.Thecoefficient The coefficient \varepsilon_{r}\left(\mathbf{x}\right) $ is reconstructed using a two-stage reconstruction procedure. In the first stage an approximately globally convergent method proposed is applied to get a good first approximation of the exact solution. In the second stage a locally convergent adaptive finite element method is applied, taking the solution of the first stage as the starting point of the minimization of the Tikhonov functional. This functional is minimized on a sequence of locally refined meshes. It is shown here that all three components of interest of targets can be simultaneously accurately imaged: refractive indices, shapes and locations

    Convergence of Adaptive Finite Element Approximations for Nonlinear Eigenvalue Problems

    Full text link
    In this paper, we study an adaptive finite element method for a class of a nonlinear eigenvalue problems that may be of nonconvex energy functional and consider its applications to quantum chemistry. We prove the convergence of adaptive finite element approximations and present several numerical examples of micro-structure of matter calculations that support our theory.Comment: 24 pages, 12 figure

    Convergence Analysis of the Lowest Order Weakly Penalized Adaptive Discontinuous Galerkin Methods

    Full text link
    In this article, we prove convergence of the weakly penalized adaptive discontinuous Galerkin methods. Unlike other works, we derive the contraction property for various discontinuous Galerkin methods only assuming the stabilizing parameters are large enough to stabilize the method. A central idea in the analysis is to construct an auxiliary solution from the discontinuous Galerkin solution by a simple post processing. Based on the auxiliary solution, we define the adaptive algorithm which guides to the convergence of adaptive discontinuous Galerkin methods

    Convergence of adaptive mixed finite element method for convection-diffusion-reaction equations

    Full text link
    We prove the convergence of an adaptive mixed finite element method (AMFEM) for (nonsymmetric) convection-diffusion-reaction equations. The convergence result holds from the cases where convection or reaction is not present to convection-or reaction-dominated problems. A novel technique of analysis is developed without any quasi orthogonality for stress and displacement variables, and without marking the oscillation dependent on discrete solutions and data. We show that AMFEM is a contraction of the error of the stress and displacement variables plus some quantity. Numerical experiments confirm the theoretical results.Comment: arXiv admin note: text overlap with arXiv:1312.645
    corecore