2,986 research outputs found

    An Axiomatic Setup for Algorithmic Homological Algebra and an Alternative Approach to Localization

    Full text link
    In this paper we develop an axiomatic setup for algorithmic homological algebra of Abelian categories. This is done by exhibiting all existential quantifiers entering the definition of an Abelian category, which for the sake of computability need to be turned into constructive ones. We do this explicitly for the often-studied example Abelian category of finitely presented modules over a so-called computable ring RR, i.e., a ring with an explicit algorithm to solve one-sided (in)homogeneous linear systems over RR. For a finitely generated maximal ideal m\mathfrak{m} in a commutative ring RR we show how solving (in)homogeneous linear systems over RmR_{\mathfrak{m}} can be reduced to solving associated systems over RR. Hence, the computability of RR implies that of RmR_{\mathfrak{m}}. As a corollary we obtain the computability of the category of finitely presented RmR_{\mathfrak{m}}-modules as an Abelian category, without the need of a Mora-like algorithm. The reduction also yields, as a by-product, a complexity estimation for the ideal membership problem over local polynomial rings. Finally, in the case of localized polynomial rings we demonstrate the computational advantage of our homologically motivated alternative approach in comparison to an existing implementation of Mora's algorithm.Comment: Fixed a typo in the proof of Lemma 4.3 spotted by Sebastian Posu

    Modeling Quantum Behavior in the Framework of Permutation Groups

    Full text link
    Quantum-mechanical concepts can be formulated in constructive finite terms without loss of their empirical content if we replace a general unitary group by a unitary representation of a finite group. Any linear representation of a finite group can be realized as a subrepresentation of a permutation representation. Thus, quantum-mechanical problems can be expressed in terms of permutation groups. This approach allows us to clarify the meaning of a number of physical concepts. Combining methods of computational group theory with Monte Carlo simulation we study a model based on representations of permutation groups.Comment: 8 pages, based on plenary lecture at Mathematical Modeling and Computational Physics 2017, Dubna, July 3--7, 201

    Classification of Multidimensional Darboux Transformations: First Order and Continued Type

    Full text link
    We analyze Darboux transformations in very general settings for multidimensional linear partial differential operators. We consider all known types of Darboux transformations, and present a new type. We obtain a full classification of all operators that admit Wronskian type Darboux transformations of first order and a complete description of all possible first-order Darboux transformations. We introduce a large class of invertible Darboux transformations of higher order, which we call Darboux transformations of continued Type I. This generalizes the class of Darboux transformations of Type I, which was previously introduced. There is also a modification of this type of Darboux transformations, continued Wronskian type, which generalize Wronskian type Darboux transformations

    A generalization of Serre's conjecture and some related issues

    Get PDF
    AbstractSeveral topics concerned with multivariate polynomial matrices like unimodular matrix completion, matrix determinantal or primitive factorization, matrix greatest common factor existence and subsequent extraction along with relevant primeness and coprimeness issues are related to a conjecture which may be viewed as a type of generalization of the original Serre problem (conjecture) solved nonconstructively in 1976 and constructively, more recently. This generalized Serre conjecture is proved to be equivalent to several other unsettled conjectures and, therfore, all these conjectures constitute a complete set in the sense that solution to any one also solves all the remaining
    corecore