6,068 research outputs found

    Subquadratic time encodable codes beating the Gilbert-Varshamov bound

    Full text link
    We construct explicit algebraic geometry codes built from the Garcia-Stichtenoth function field tower beating the Gilbert-Varshamov bound for alphabet sizes at least 192. Messages are identied with functions in certain Riemann-Roch spaces associated with divisors supported on multiple places. Encoding amounts to evaluating these functions at degree one places. By exploiting algebraic structures particular to the Garcia-Stichtenoth tower, we devise an intricate deterministic \omega/2 < 1.19 runtime exponent encoding and 1+\omega/2 < 2.19 expected runtime exponent randomized (unique and list) decoding algorithms. Here \omega < 2.373 is the matrix multiplication exponent. If \omega = 2, as widely believed, the encoding and decoding runtimes are respectively nearly linear and nearly quadratic. Prior to this work, encoding (resp. decoding) time of code families beating the Gilbert-Varshamov bound were quadratic (resp. cubic) or worse

    Efficient Multi-Point Local Decoding of Reed-Muller Codes via Interleaved Codex

    Get PDF
    Reed-Muller codes are among the most important classes of locally correctable codes. Currently local decoding of Reed-Muller codes is based on decoding on lines or quadratic curves to recover one single coordinate. To recover multiple coordinates simultaneously, the naive way is to repeat the local decoding for recovery of a single coordinate. This decoding algorithm might be more expensive, i.e., require higher query complexity. In this paper, we focus on Reed-Muller codes with usual parameter regime, namely, the total degree of evaluation polynomials is d=Θ(q)d=\Theta({q}), where qq is the code alphabet size (in fact, dd can be as big as q/4q/4 in our setting). By introducing a novel variation of codex, i.e., interleaved codex (the concept of codex has been used for arithmetic secret sharing \cite{C11,CCX12}), we are able to locally recover arbitrarily large number kk of coordinates of a Reed-Muller code simultaneously at the cost of querying O(q2k)O(q^2k) coordinates. It turns out that our local decoding of Reed-Muller codes shows ({\it perhaps surprisingly}) that accessing kk locations is in fact cheaper than repeating the procedure for accessing a single location for kk times. Our estimation of success error probability is based on error probability bound for tt-wise linearly independent variables given in \cite{BR94}

    Asymptotically good binary linear codes with asymptotically good self-intersection spans

    Full text link
    If C is a binary linear code, let C^2 be the linear code spanned by intersections of pairs of codewords of C. We construct an asymptotically good family of binary linear codes such that, for C ranging in this family, the C^2 also form an asymptotically good family. For this we use algebraic-geometry codes, concatenation, and a fair amount of bilinear algebra. More precisely, the two main ingredients used in our construction are, first, a description of the symmetric square of an odd degree extension field in terms only of field operations of small degree, and second, a recent result of Garcia-Stichtenoth-Bassa-Beelen on the number of points of curves on such an odd degree extension field.Comment: 18 pages; v2->v3: expanded introduction and bibliography + various minor change

    Construction of asymptotically good low-rate error-correcting codes through pseudo-random graphs

    Get PDF
    A novel technique, based on the pseudo-random properties of certain graphs known as expanders, is used to obtain novel simple explicit constructions of asymptotically good codes. In one of the constructions, the expanders are used to enhance Justesen codes by replicating, shuffling, and then regrouping the code coordinates. For any fixed (small) rate, and for a sufficiently large alphabet, the codes thus obtained lie above the Zyablov bound. Using these codes as outer codes in a concatenated scheme, a second asymptotic good construction is obtained which applies to small alphabets (say, GF(2)) as well. Although these concatenated codes lie below the Zyablov bound, they are still superior to previously known explicit constructions in the zero-rate neighborhood

    Incidence structures from the blown-up plane and LDPC codes

    Get PDF
    In this article, new regular incidence structures are presented. They arise from sets of conics in the affine plane blown-up at its rational points. The LDPC codes given by these incidence matrices are studied. These sparse incidence matrices turn out to be redundant, which means that their number of rows exceeds their rank. Such a feature is absent from random LDPC codes and is in general interesting for the efficiency of iterative decoding. The performance of some codes under iterative decoding is tested. Some of them turn out to perform better than regular Gallager codes having similar rate and row weight.Comment: 31 pages, 10 figure

    On products and powers of linear codes under componentwise multiplication

    Full text link
    In this text we develop the formalism of products and powers of linear codes under componentwise multiplication. As an expanded version of the author's talk at AGCT-14, focus is put mostly on basic properties and descriptive statements that could otherwise probably not fit in a regular research paper. On the other hand, more advanced results and applications are only quickly mentioned with references to the literature. We also point out a few open problems. Our presentation alternates between two points of view, which the theory intertwines in an essential way: that of combinatorial coding, and that of algebraic geometry. In appendices that can be read independently, we investigate topics in multilinear algebra over finite fields, notably we establish a criterion for a symmetric multilinear map to admit a symmetric algorithm, or equivalently, for a symmetric tensor to decompose as a sum of elementary symmetric tensors.Comment: 75 pages; expanded version of a talk at AGCT-14 (Luminy), to appear in vol. 637 of Contemporary Math., AMS, Apr. 2015; v3: minor typos corrected in the final "open questions" sectio
    • 

    corecore