772 research outputs found

    Local Approximation Schemes for Ad Hoc and Sensor Networks

    Get PDF
    We present two local approaches that yield polynomial-time approximation schemes (PTAS) for the Maximum Independent Set and Minimum Dominating Set problem in unit disk graphs. The algorithms run locally in each node and compute a (1+ε)-approximation to the problems at hand for any given ε > 0. The time complexity of both algorithms is O(TMIS + log*! n/εO(1)), where TMIS is the time required to compute a maximal independent set in the graph, and n denotes the number of nodes. We then extend these results to a more general class of graphs in which the maximum number of pair-wise independent nodes in every r-neighborhood is at most polynomial in r. Such graphs of polynomially bounded growth are introduced as a more realistic model for wireless networks and they generalize existing models, such as unit disk graphs or coverage area graphs

    Message and time efficient multi-broadcast schemes

    Full text link
    We consider message and time efficient broadcasting and multi-broadcasting in wireless ad-hoc networks, where a subset of nodes, each with a unique rumor, wish to broadcast their rumors to all destinations while minimizing the total number of transmissions and total time until all rumors arrive to their destination. Under centralized settings, we introduce a novel approximation algorithm that provides almost optimal results with respect to the number of transmissions and total time, separately. Later on, we show how to efficiently implement this algorithm under distributed settings, where the nodes have only local information about their surroundings. In addition, we show multiple approximation techniques based on the network collision detection capabilities and explain how to calibrate the algorithms' parameters to produce optimal results for time and messages.Comment: In Proceedings FOMC 2013, arXiv:1310.459

    A PTAS for the minimum dominating set problem in unit disk graphs

    Get PDF
    We present a polynomial-time approximation scheme (PTAS) for the minimum dominating set problem in unit disk graphs. In contrast to previously known approximation schemes for the minimum dominating set problem on unit disk graphs, our approach does not assume a geometric representation of the vertices (specifying the positions of the disks in the plane) to be given as part of the input. \u

    The Homogeneous Broadcast Problem in Narrow and Wide Strips

    Get PDF
    Let PP be a set of nodes in a wireless network, where each node is modeled as a point in the plane, and let s∈Ps\in P be a given source node. Each node pp can transmit information to all other nodes within unit distance, provided pp is activated. The (homogeneous) broadcast problem is to activate a minimum number of nodes such that in the resulting directed communication graph, the source ss can reach any other node. We study the complexity of the regular and the hop-bounded version of the problem (in the latter, ss must be able to reach every node within a specified number of hops), with the restriction that all points lie inside a strip of width ww. We almost completely characterize the complexity of both the regular and the hop-bounded versions as a function of the strip width ww.Comment: 50 pages, WADS 2017 submissio
    • …
    corecore