898 research outputs found

    Localization and tracking of electronic devices with their unintended emissions

    Get PDF
    The precise localization and tracking of electronic devices via their unintended emissions has a broad range of commercial and security applications. Active stimulation of the receivers of such devices with a known signal generates very low power unintended emissions. This dissertation presents localization and tracking of multiple devices using both simulation and experimental data in the form of five papers. First the localization of multiple emitting devices through active stimulation under multipath fading with a Smooth MUSIC based scheme in the near field region is presented. Spatial smoothing helps to separate the correlated sources and the multipath fading and results confirm improved accuracy. A cost effective near-field localization method is proposed next to locate multiple correlated unintended emitting devices under colored noise conditions using two well separated antenna arrays since colored noise in the environment degrades the subspace-based localization techniques. Subsequently, in order to track moving sources, a near-field scheme by using array output is introduced to monitor direction of arrival (DOA) and the distance between the antenna array and the moving source. The array output, which is a nonlinear function of DOA and distance information, is employed in the Extended Kalman Filter (EKF). In order to show the near- and far-field effect on estimation accuracy, computer simulation results are included for localization and tracking techniques. Finally, an L-shaped array is constructed and a suite of schemes are introduced for localization and tracking of such devices in the three-dimensional environment. Experimental results for localization and tracking of unintended emissions from single and multiple devices in the near-field environment of an antenna array are demonstrated --Abstract, page iv

    Sparse Modeling of Grouped Line Spectra

    Get PDF
    This licentiate thesis focuses on clustered parametric models for estimation of line spectra, when the spectral content of a signal source is assumed to exhibit some form of grouping. Different from previous parametric approaches, which generally require explicit knowledge of the model orders, this thesis exploits sparse modeling, where the orders are implicitly chosen. For line spectra, the non-linear parametric model is approximated by a linear system, containing an overcomplete basis of candidate frequencies, called a dictionary, and a large set of linear response variables that selects and weights the components in the dictionary. Frequency estimates are obtained by solving a convex optimization program, where the sum of squared residuals is minimized. To discourage overfitting and to infer certain structure in the solution, different convex penalty functions are introduced into the optimization. The cost trade-off between fit and penalty is set by some user parameters, as to approximate the true number of spectral lines in the signal, which implies that the response variable will be sparse, i.e., have few non-zero elements. Thus, instead of explicit model orders, the orders are implicitly set by this trade-off. For grouped variables, the dictionary is customized, and appropriate convex penalties selected, so that the solution becomes group sparse, i.e., has few groups with non-zero variables. In an array of sensors, the specific time-delays and attenuations will depend on the source and sensor positions. By modeling this, one may estimate the location of a source. In this thesis, a novel joint location and grouped frequency estimator is proposed, which exploits sparse modeling for both spectral and spatial estimates, showing robustness against sources with overlapping frequency content. For audio signals, this thesis uses two different features for clustering. Pitch is a perceptual property of sound that may be described by the harmonic model, i.e., by a group of spectral lines at integer multiples of a fundamental frequency, which we estimate by exploiting a novel adaptive total variation penalty. The other feature, chroma, is a concept in musical theory, collecting pitches at powers of 2 from each other into groups. Using a chroma dictionary, together with appropriate group sparse penalties, we propose an automatic transcription of the chroma content of a signal

    Near field phased array DOA and range estimation of UHF RFID tags

    Get PDF
    This paper presents a near field localization system based on a phased array for UHF RFID tags. To estimate angle and range the system uses a two-dimensional MUSIC algorithm. A four channel phased array is used to experimentally verify the estimation of angle and range for an EPC gen2 tag. The system is calibrated for phase offsets introduced by hardware as simulations show the sensitivity to these offsets. Experiments with this calibrated receiver array give inaccurate ranging estimates. A solution is to calibrate the system for every angle, allowing meaningful range estimates. Experiments in a different environment show a reduced result, indicating the need for extensive calibration

    Near-field Localization of Audio:A Maximum Likelihood Approach

    Get PDF

    Convexity in source separation: Models, geometry, and algorithms

    Get PDF
    Source separation or demixing is the process of extracting multiple components entangled within a signal. Contemporary signal processing presents a host of difficult source separation problems, from interference cancellation to background subtraction, blind deconvolution, and even dictionary learning. Despite the recent progress in each of these applications, advances in high-throughput sensor technology place demixing algorithms under pressure to accommodate extremely high-dimensional signals, separate an ever larger number of sources, and cope with more sophisticated signal and mixing models. These difficulties are exacerbated by the need for real-time action in automated decision-making systems. Recent advances in convex optimization provide a simple framework for efficiently solving numerous difficult demixing problems. This article provides an overview of the emerging field, explains the theory that governs the underlying procedures, and surveys algorithms that solve them efficiently. We aim to equip practitioners with a toolkit for constructing their own demixing algorithms that work, as well as concrete intuition for why they work

    Sparsity-Cognizant Total Least-Squares for Perturbed Compressive Sampling

    Full text link
    Solving linear regression problems based on the total least-squares (TLS) criterion has well-documented merits in various applications, where perturbations appear both in the data vector as well as in the regression matrix. However, existing TLS approaches do not account for sparsity possibly present in the unknown vector of regression coefficients. On the other hand, sparsity is the key attribute exploited by modern compressive sampling and variable selection approaches to linear regression, which include noise in the data, but do not account for perturbations in the regression matrix. The present paper fills this gap by formulating and solving TLS optimization problems under sparsity constraints. Near-optimum and reduced-complexity suboptimum sparse (S-) TLS algorithms are developed to address the perturbed compressive sampling (and the related dictionary learning) challenge, when there is a mismatch between the true and adopted bases over which the unknown vector is sparse. The novel S-TLS schemes also allow for perturbations in the regression matrix of the least-absolute selection and shrinkage selection operator (Lasso), and endow TLS approaches with ability to cope with sparse, under-determined "errors-in-variables" models. Interesting generalizations can further exploit prior knowledge on the perturbations to obtain novel weighted and structured S-TLS solvers. Analysis and simulations demonstrate the practical impact of S-TLS in calibrating the mismatch effects of contemporary grid-based approaches to cognitive radio sensing, and robust direction-of-arrival estimation using antenna arrays.Comment: 30 pages, 10 figures, submitted to IEEE Transactions on Signal Processin

    Localizing Near and Far Field Acoustic Sources with Distributed Microhone Arrays

    Get PDF
    • …
    corecore