3,632 research outputs found

    A Universal Part-of-Speech Tagset

    Full text link
    To facilitate future research in unsupervised induction of syntactic structure and to standardize best-practices, we propose a tagset that consists of twelve universal part-of-speech categories. In addition to the tagset, we develop a mapping from 25 different treebank tagsets to this universal set. As a result, when combined with the original treebank data, this universal tagset and mapping produce a dataset consisting of common parts-of-speech for 22 different languages. We highlight the use of this resource via two experiments, including one that reports competitive accuracies for unsupervised grammar induction without gold standard part-of-speech tags

    Modelling the Lexicon in Unsupervised Part of Speech Induction

    Full text link
    Automatically inducing the syntactic part-of-speech categories for words in text is a fundamental task in Computational Linguistics. While the performance of unsupervised tagging models has been slowly improving, current state-of-the-art systems make the obviously incorrect assumption that all tokens of a given word type must share a single part-of-speech tag. This one-tag-per-type heuristic counters the tendency of Hidden Markov Model based taggers to over generate tags for a given word type. However, it is clearly incompatible with basic syntactic theory. In this paper we extend a state-of-the-art Pitman-Yor Hidden Markov Model tagger with an explicit model of the lexicon. In doing so we are able to incorporate a soft bias towards inducing few tags per type. We develop a particle filter for drawing samples from the posterior of our model and present empirical results that show that our model is competitive with and faster than the state-of-the-art without making any unrealistic restrictions.Comment: To be presented at the 14th Conference of the European Chapter of the Association for Computational Linguistic

    Conditional Random Field Autoencoders for Unsupervised Structured Prediction

    Full text link
    We introduce a framework for unsupervised learning of structured predictors with overlapping, global features. Each input's latent representation is predicted conditional on the observable data using a feature-rich conditional random field. Then a reconstruction of the input is (re)generated, conditional on the latent structure, using models for which maximum likelihood estimation has a closed-form. Our autoencoder formulation enables efficient learning without making unrealistic independence assumptions or restricting the kinds of features that can be used. We illustrate insightful connections to traditional autoencoders, posterior regularization and multi-view learning. We show competitive results with instantiations of the model for two canonical NLP tasks: part-of-speech induction and bitext word alignment, and show that training our model can be substantially more efficient than comparable feature-rich baselines

    Fast and Accurate Neural Word Segmentation for Chinese

    Full text link
    Neural models with minimal feature engineering have achieved competitive performance against traditional methods for the task of Chinese word segmentation. However, both training and working procedures of the current neural models are computationally inefficient. This paper presents a greedy neural word segmenter with balanced word and character embedding inputs to alleviate the existing drawbacks. Our segmenter is truly end-to-end, capable of performing segmentation much faster and even more accurate than state-of-the-art neural models on Chinese benchmark datasets.Comment: To appear in ACL201
    • …
    corecore