4 research outputs found

    A Comparison of Beam Refinement Algorithms for Millimeter Wave Initial Access

    Get PDF
    Initial access (IA) is identified as a key challenge for the upcoming 5G mobile communication system operating at high carrier frequencies, and several techniques are currently being proposed. In this paper, we extend our previously proposed genetic algorithm (GA)-based beam refinement scheme to include beamforming at both the transmitter and the receiver, and compare the performance with alternative approaches in the millimeter wave multi-user multiple-input-multiple-output (MU-MIMO) networks. Taking the millimeter wave communications characteristics and various metrics into account, we investigate the effect of different parameters such as the number of transmit antennas/users/per-user receive antennas, beamforming resolution as well as hardware impairments on the system performance employing different beam refinement algorithms. As shown, our proposed GA-based approach performs well in delay-constrained networks with multi-antenna users. Compared to the considered state-of-the-art schemes, our method reaches the highest service outage-constrained end-to-end throughput with considerably less implementation complexity. Moreover, taking the users\u27 mobility into account, GA-based approach can remarkably reduce the beam refinement delay at low/moderate speeds when the spatial correlation is taken into account

    Genetic Algorithm-Based Beam Refinement for Initial Access in Millimeter Wave Mobile Networks

    Get PDF
    Initial access (IA) is identified as a key challenge for the upcoming 5G mobile communication system operating at high carrier frequencies, and several techniques are currently being proposed. In this paper, we extend our previously proposed efficient genetic algorithm-(GA-) based beam refinement scheme to include beamforming at both the transmitter and the receiver and compare the performance with alternative approaches in the millimeter wave multiuser multiple-input-multiple-output (MU-MIMO) networks. Taking the millimeter wave communications characteristics and various metrics into account, we investigate the effect of different parameters such as the number of transmit antennas/users/per-user receive antennas, beamforming resolutions, and hardware impairments on the system performance employing different beam refinement algorithms. As shown, our proposed GA-based approach performs well in delay-constrained networks with multiantenna users. Compared to the considered state-of-the-art schemes, our method reaches the highest service outage-constrained end-to-end throughput with considerably less implementation complexity. Moreover, taking the users\u27 mobility into account, our GA-based approach can remarkably reduce the beam refinement delay at low/moderate speeds when the spatial correlation is taken into account. Finally, we compare the cases of collaborative users and noncollaborative users and evaluate their difference in system performance

    Predictor Antenna Systems: Exploiting Channel State Information for Vehicle Communications

    Get PDF
    Vehicle communication is one of the most important use cases in the fifth generation of wireless networks (5G).\ua0 The growing demand for quality of service (QoS) characterized by performance metrics, such as spectrum efficiency, peak data rate, and outage probability, is mainly limited by inaccurate prediction/estimation of channel state information (CSI) of the rapidly changing environment around moving vehicles. One way to increase the prediction horizon of CSI in order to improve the QoS is deploying predictor antennas (PAs).\ua0 A PA system consists of two sets of antennas typically mounted on the roof of a vehicle, where the PAs positioned at the front of the vehicle are used to predict the CSI observed by the receive antennas (RAs) that are aligned behind the PAs. In realistic PA systems, however, the actual benefit is affected by a variety of factors, including spatial mismatch, antenna utilization, temporal correlation of scattering environment, and CSI estimation error. This thesis investigates different resource allocation schemes for the PA systems under practical constraints, with main contributions summarized as follows.First, in Paper A, we study the PA system in the presence of the so-called spatial mismatch problem, i.e., when the channel observed by the PA is not exactly the same as the one experienced by the RA. We derive closed-form expressions for the throughput-optimized rate adaptation, and evaluate the system performance in various temporally-correlated conditions for the scattering environment. Our results indicate that PA-assisted adaptive rate adaptation leads to a considerable performance improvement, compared to the cases with no rate adaptation. Then, to simplify e.g., various integral calculations as well as different operations such as parameter optimization, in Paper B, we propose a semi-linear approximation of the Marcum Q-function, and apply the proposed approximation to the evaluation of the PA system. We also perform deep analysis of the effect of various parameters such as antenna separation as well as CSI estimation error. As we show, our proposed approximation scheme enables us to analyze PA systems with high accuracy.The second part of the thesis focuses on improving the spectral efficiency of the PA system by involving the PA into data transmission. In Paper C, we analyze the outage-limited performance of PA systems using hybrid automatic repeat request (HARQ). With our proposed approach, the PA is used not only for improving the CSI in the retransmissions to the RA, but also for data transmission in the initial round.\ua0 As we show in the analytical and the simulation results, the combination of PA and HARQ protocols makes it possible to improve the spectral efficiency and adapt transmission parameters to mitigate the effect of spatial mismatch

    Predictor Antenna Systems: Exploiting Channel State Information for Vehicle Communications

    Get PDF
    Vehicle communication is one of the most important use cases in the fifth generation of wireless networks (5G). The growing demand for quality of service (QoS) characterized by performance metrics, such as spectrum efficiency, peak data rate, and outage probability, is mainly limited by inaccurate prediction/estimation of channel state information (CSI) of the rapidly changing environment around moving vehicles. One way to increase the prediction horizon of CSI in order to improve the QoS is deploying predictor antennas (PAs). A PA system consists of two sets of antennas typically mounted on the roof of a vehicle, where the PAs positioned at the front of the vehicle are used to predict the CSI observed by the receive antennas (RAs) that are aligned behind the PAs. In realistic PA systems, however, the actual benefit is affected by a variety of factors, including spatial mismatch, antenna utilization, temporal correlation of scattering environment, and CSI estimation error. This thesis investigates different resource allocation schemes for the PA systems under practical constraints.Comment: Licentiate thesis, Chalmers University of Technolog
    corecore