2 research outputs found

    Image-based Guidance of Autonomous Aircraft for Wildfire Surveillance and Prediction

    Full text link
    Small unmanned aircraft can help firefighters combat wildfires by providing real-time surveillance of the growing fires. However, guiding the aircraft autonomously given only wildfire images is a challenging problem. This work models noisy images obtained from on-board cameras and proposes two approaches to filtering the wildfire images. The first approach uses a simple Kalman filter to reduce noise and update a belief map in observed areas. The second approach uses a particle filter to predict wildfire growth and uses observations to estimate uncertainties relating to wildfire expansion. The belief maps are used to train a deep reinforcement learning controller, which learns a policy to navigate the aircraft to survey the wildfire while avoiding flight directly over the fire. Simulation results show that the proposed controllers precisely guide the aircraft and accurately estimate wildfire growth, and a study of observation noise demonstrates the robustness of the particle filter approach

    Distributed Wildfire Surveillance with Autonomous Aircraft using Deep Reinforcement Learning

    Full text link
    Teams of autonomous unmanned aircraft can be used to monitor wildfires, enabling firefighters to make informed decisions. However, controlling multiple autonomous fixed-wing aircraft to maximize forest fire coverage is a complex problem. The state space is high dimensional, the fire propagates stochastically, the sensor information is imperfect, and the aircraft must coordinate with each other to accomplish their mission. This work presents two deep reinforcement learning approaches for training decentralized controllers that accommodate the high dimensionality and uncertainty inherent in the problem. The first approach controls the aircraft using immediate observations of the individual aircraft. The second approach allows aircraft to collaborate on a map of the wildfire's state and maintain a time history of locations visited, which are used as inputs to the controller. Simulation results show that both approaches allow the aircraft to accurately track wildfire expansions and outperform an online receding horizon controller. Additional simulations demonstrate that the approach scales with different numbers of aircraft and generalizes to different wildfire shapes
    corecore