2 research outputs found

    Should Observations be Grouped for Effective Monitoring of Multivariate Process Variability?

    Full text link
    A multivariate dispersion control chart monitors changes in the process variability of multiple correlated quality characteristics. In this article, we investigate and compare the performance of charts designed to monitor variability based on individual and grouped multivariate observations. We compare one of the most well-known methods for monitoring individual observations -- a multivariate EWMA chart proposed by Huwang et al -- to various charts based on grouped observations. In addition, we compare charts based on monitoring with overlapping and nonoverlapping subgroups. We recommend using charts based on overlapping subgroups when monitoring with subgroup data. The effect of subgroup size is also investigated. Steady-state average time to signal is used as performance measure. We show that monitoring methods based on individual observations are the quickest in detecting sustained shifts in the process variability. We use a simulation study to obtain our results and illustrated these with a case study

    Controlling the EWMA S^2 control chart false alarm behavior when the in-control variance level must be estimated

    Full text link
    Investigating the problem of setting control limits in the case of parameter uncertainty is more accessible when monitoring the variance because only one parameter has to be estimated. Simply ignoring the induced uncertainty frequently leads to control charts with poor false alarm performances. Adjusting the unconditional in-control (IC) average run length (ARL) makes the situation even worse. Guaranteeing a minimum conditional IC ARL with some given probability is another very popular approach to solving these difficulties. However, it is very conservative as well as more complex and more difficult to communicate. We utilize the probability of a false alarm within the planned number of points to be plotted on the control chart. It turns out that adjusting this probability produces notably different limit adjustments compared to controlling the unconditional IC ARL. We then develop numerical algorithms to determine the respective modifications of the upper and two-sided exponentially weighted moving average (EWMA) charts based on the sample variance for normally distributed data. These algorithms are made available within an R package. Finally, the impacts of the EWMA smoothing constant and the size of the preliminary sample on the control chart design and its performance are studied
    corecore