12,833 research outputs found

    Aggregated Deep Local Features for Remote Sensing Image Retrieval

    Get PDF
    Remote Sensing Image Retrieval remains a challenging topic due to the special nature of Remote Sensing Imagery. Such images contain various different semantic objects, which clearly complicates the retrieval task. In this paper, we present an image retrieval pipeline that uses attentive, local convolutional features and aggregates them using the Vector of Locally Aggregated Descriptors (VLAD) to produce a global descriptor. We study various system parameters such as the multiplicative and additive attention mechanisms and descriptor dimensionality. We propose a query expansion method that requires no external inputs. Experiments demonstrate that even without training, the local convolutional features and global representation outperform other systems. After system tuning, we can achieve state-of-the-art or competitive results. Furthermore, we observe that our query expansion method increases overall system performance by about 3%, using only the top-three retrieved images. Finally, we show how dimensionality reduction produces compact descriptors with increased retrieval performance and fast retrieval computation times, e.g. 50% faster than the current systems.Comment: Published in Remote Sensing. The first two authors have equal contributio

    Exploiting Deep Features for Remote Sensing Image Retrieval: A Systematic Investigation

    Full text link
    Remote sensing (RS) image retrieval is of great significant for geological information mining. Over the past two decades, a large amount of research on this task has been carried out, which mainly focuses on the following three core issues: feature extraction, similarity metric and relevance feedback. Due to the complexity and multiformity of ground objects in high-resolution remote sensing (HRRS) images, there is still room for improvement in the current retrieval approaches. In this paper, we analyze the three core issues of RS image retrieval and provide a comprehensive review on existing methods. Furthermore, for the goal to advance the state-of-the-art in HRRS image retrieval, we focus on the feature extraction issue and delve how to use powerful deep representations to address this task. We conduct systematic investigation on evaluating correlative factors that may affect the performance of deep features. By optimizing each factor, we acquire remarkable retrieval results on publicly available HRRS datasets. Finally, we explain the experimental phenomenon in detail and draw conclusions according to our analysis. Our work can serve as a guiding role for the research of content-based RS image retrieval

    Autoencoding the Retrieval Relevance of Medical Images

    Full text link
    Content-based image retrieval (CBIR) of medical images is a crucial task that can contribute to a more reliable diagnosis if applied to big data. Recent advances in feature extraction and classification have enormously improved CBIR results for digital images. However, considering the increasing accessibility of big data in medical imaging, we are still in need of reducing both memory requirements and computational expenses of image retrieval systems. This work proposes to exclude the features of image blocks that exhibit a low encoding error when learned by a n/p/nn/p/n autoencoder (p ⁣< ⁣np\!<\!n). We examine the histogram of autoendcoding errors of image blocks for each image class to facilitate the decision which image regions, or roughly what percentage of an image perhaps, shall be declared relevant for the retrieval task. This leads to reduction of feature dimensionality and speeds up the retrieval process. To validate the proposed scheme, we employ local binary patterns (LBP) and support vector machines (SVM) which are both well-established approaches in CBIR research community. As well, we use IRMA dataset with 14,410 x-ray images as test data. The results show that the dimensionality of annotated feature vectors can be reduced by up to 50% resulting in speedups greater than 27% at expense of less than 1% decrease in the accuracy of retrieval when validating the precision and recall of the top 20 hits.Comment: To appear in proceedings of The 5th International Conference on Image Processing Theory, Tools and Applications (IPTA'15), Nov 10-13, 2015, Orleans, Franc
    corecore