2 research outputs found

    Identification and Control of a Soft-Robotic Bladder Towards Impedance-Style Haptic Terrain Display

    Full text link
    This paper evaluates the capabilities of a soft robotic pneumatic actuator derived from the terrain display haptic device, "The Smart Shoe." The bladder design of the Smart Shoe is upgraded to include a pressure supply and greater output flow capabilities. A bench top setup is created to rigorously test this new type of actuator. The bandwidth and stiffness capability of this new actuator are evaluated relative to forces and displacements encountered during human gait. Four force vs. displacement profiles relevant to haptic terrain display are proposed and tested using sliding-mode tracking control. It was found that the actuator could sustain a stiffness similar to a soft-soled shoe on concrete, as well as other terrain (sand, dirt, etc.), while the bandwidth of 7.3 Hz fell short of the goal bandwidth of 10 Hz. Compressions of the bladder done at 20 mm/s, which is similar to the speed of human gait, showed promising results in tracking a desired force trajectory. The results in this paper show this actuator is capable of displaying haptic terrain trajectories, providing a basis for futurep wearable haptic terrain display devices

    Integrating Vehicle Slip and Yaw in Overarching Multi-Tiered Automated Vehicle Steering Control to Balance Path Following Accuracy, Gracefulness, and Safety

    Full text link
    Balancing path following accuracy and error convergence with graceful motion in steering control is challenging due to the competing nature of these requirements, especially across a range of operating speeds and conditions. This paper demonstrates that an integrated multi-tiered steering controller considering the impact of slip on kinematic control, dynamic control, and steering actuator rate commands achieves accurate and graceful path following. This work is founded on multi-tiered sideslip and yaw-based models, which allow derivation of controllers considering error due to sideslip and the mapping between steering commands and graceful lateral motion. Observer based sideslip estimates are combined with heading error in the kinematic controller to provide feedforward slip compensation. Path following error is compensated by a continuous Variable Structure Controller (VSC) using speed-based path manifolds to balance graceful motion and error convergence. Resulting yaw rate commands are used by a backstepping dynamic controller to generate steering rate commands. A High Gain Observer (HGO) estimates sideslip and yaw rate for output feedback control. Stability analysis of the output feedback controller is provided, and peaking is resolved. The work focuses on lateral control alone so that the steering controller can be combined with other speed controllers. Field results provide comparisons to related approaches demonstrating gracefulness and accuracy in different complex scenarios with varied weather conditions and perturbations
    corecore