260,887 research outputs found

    An Improved Approach for Contrast Enhancement of Spinal Cord Images based on Multiscale Retinex Algorithm

    Full text link
    This paper presents a new approach for contrast enhancement of spinal cord medical images based on multirate scheme incorporated into multiscale retinex algorithm. The proposed work here uses HSV color space, since HSV color space separates color details from intensity. The enhancement of medical image is achieved by down sampling the original image into five versions, namely, tiny, small, medium, fine, and normal scale. This is due to the fact that the each versions of the image when independently enhanced and reconstructed results in enormous improvement in the visual quality. Further, the contrast stretching and MultiScale Retinex (MSR) techniques are exploited in order to enhance each of the scaled version of the image. Finally, the enhanced image is obtained by combining each of these scales in an efficient way to obtain the composite enhanced image. The efficiency of the proposed algorithm is validated by using a wavelet energy metric in the wavelet domain. Reconstructed image using proposed method highlights the details (edges and tissues), reduces image noise (Gaussian and Speckle) and improves the overall contrast. The proposed algorithm also enhances sharp edges of the tissue surrounding the spinal cord regions which is useful for diagnosis of spinal cord lesions. Elaborated experiments are conducted on several medical images and results presented show that the enhanced medical pictures are of good quality and is found to be better compared with other researcher methods.Comment: 13 pages, 6 figures, International Journal of Imaging and Robotics. arXiv admin note: text overlap with arXiv:1406.571

    Classification of interstitial lung disease patterns with topological texture features

    Full text link
    Topological texture features were compared in their ability to classify morphological patterns known as 'honeycombing' that are considered indicative for the presence of fibrotic interstitial lung diseases in high-resolution computed tomography (HRCT) images. For 14 patients with known occurrence of honey-combing, a stack of 70 axial, lung kernel reconstructed images were acquired from HRCT chest exams. A set of 241 regions of interest of both healthy and pathological (89) lung tissue were identified by an experienced radiologist. Texture features were extracted using six properties calculated from gray-level co-occurrence matrices (GLCM), Minkowski Dimensions (MDs), and three Minkowski Functionals (MFs, e.g. MF.euler). A k-nearest-neighbor (k-NN) classifier and a Multilayer Radial Basis Functions Network (RBFN) were optimized in a 10-fold cross-validation for each texture vector, and the classification accuracy was calculated on independent test sets as a quantitative measure of automated tissue characterization. A Wilcoxon signed-rank test was used to compare two accuracy distributions and the significance thresholds were adjusted for multiple comparisons by the Bonferroni correction. The best classification results were obtained by the MF features, which performed significantly better than all the standard GLCM and MD features (p < 0.005) for both classifiers. The highest accuracy was found for MF.euler (97.5%, 96.6%; for the k-NN and RBFN classifier, respectively). The best standard texture features were the GLCM features 'homogeneity' (91.8%, 87.2%) and 'absolute value' (90.2%, 88.5%). The results indicate that advanced topological texture features can provide superior classification performance in computer-assisted diagnosis of interstitial lung diseases when compared to standard texture analysis methods.Comment: 8 pages, 5 figures, Proceedings SPIE Medical Imaging 201

    Impact of incomplete ventricular coverage on diagnostic performance of myocardial perfusion imaging.

    Get PDF
    In the context of myocardial perfusion imaging (MPI) with cardiac magnetic resonance (CMR), there is ongoing debate on the merits of using technically complex acquisition methods to achieve whole-heart spatial coverage, rather than conventional 3-slice acquisition. An adequately powered comparative study is difficult to achieve given the requirement for two separate stress CMR studies in each patient. The aim of this work is to draw relevant conclusions from SPECT MPI by comparing whole-heart versus simulated 3-slice coverage in a large existing dataset. SPECT data from 651 patients with suspected coronary artery disease who underwent invasive angiography were analyzed. A computational approach was designed to model 3-slice MPI by retrospective subsampling of whole- heart data. For both whole-heart and 3-slice approaches, the diagnostic performance and the stress total perfusion deficit (TPD) score-a measure of ischemia extent/severity-were quantified and compared. Diagnostic accuracy for the 3-slice and whole-heart approaches were similar (area under the curve: 0.843 vs. 0.855, respectively; P = 0.07). The majority (54%) of cases missed by 3-slice imaging had primarily apical ischemia. Whole-heart and 3-slice TPD scores were strongly correlated (R2 = 0.93, P &lt; 0.001) but 3-slice TPD showed a small yet significant bias compared to whole-heart TPD (- 1.19%; P &lt; 0.0001) and the 95% limits of agreement were relatively wide (- 6.65% to 4.27%). Incomplete ventricular coverage typically acquired in 3-slice CMR MPI does not significantly affect the diagnostic accuracy. However, 3-slice MPI may fail to detect severe apical ischemia and underestimate the extent/severity of perfusion defects. Our results suggest that caution is required when comparing the ischemic burden between 3-slice and whole-heart datasets, and corroborate the need to establish prognostic thresholds specific to each approach
    • …
    corecore