994 research outputs found

    Low Frequency Simulations for Ambisonics Auralization of a Car Sound System

    Get PDF
    In this paper, a technique is described for obtaining the High Order Ambisonics (HOA) Impulse Responses (IRs) of an automotive infotainment system, relying on Finite Elements Method (FEM) simulations performed in COMSOL Multiphysics. The resulting HOA IRs are employed for auralizing the car sound system, either inside an Ambisonics listening room with a loudspeaker rig or with binaural rendering on a Head Mounted Display (HMD), benefiting from head-tracking and personalized Head Related Transfer Functions (HRTFs). This allows performing subjective tests before the prototype is built and preserving the auditory experience with a degree of realism unattainable with the static binaural approach. Measurements performed in a prototype vehicle with a spherical microphone array are compared to FEM simulations. A good agreement between numerical and experimental methods have been demonstrated

    Sound Zone Control inside Spatially Confined Regions in Acoustic Enclosures

    Get PDF

    Recording, Analysis and Playback of Spatial Sound Field using Novel Design Methods of Transducer Arrays

    Get PDF
    Nowadays, a growing interest in the recording and reproduction of spatial audio has been observed. With virtual and augmented reality technologies spreading fast thanks to entertainment and video game industries, also the professional opportunities in the field of engineering are evolving. However, despite many microphone arrays are reaching the market, most of them is not optimized for engineering or diagnostic use and remains mainly confined to voice and music recordings. In this thesis, the design of two new systems for recording and analysing the spatial distribution of sound energy, employing arrays of transducers and cameras, is discussed. Both acoustic and visual spatial information is recorded and combined together to produce static and dynamic colour maps, with a specially designed software and employing Ambisonics and Spatial PCM Sampling (SPS), two common spatial audio formats, for signals processing. The first solution consists in a microphone array made of 32 capsules and a circular array of eight cameras, optimized for low frequencies. The size of the array is designed accordingly to the frequency range of interest for automotive Noise, Vibration & Harshness (NVH) applications. The second system is an underwater probe with four hydrophones and a panoramic camera, with which it is possible to monitor the effects of underwater noise produced by human activities on marine species. Finite Elements Method (FEM) simulations have been used to calculate the array response, thus deriving the filtering matrix and performing theoretical evaluation of the spatial performance. Field tests of the proposed solutions are presented in comparison with the current state-of-the-art equipment. The faithful reproduction of the spatial sound field arouses equally interest. Hence, a method to playback panoramic video with spatial audio is presented, making use of Virtual Reality (VR) technology, spatial audio, individualized Head Related Transfer Functions (HRTFs) and personalized headphones equalization. The work in its entirety presents a complete methodology for recording, analysing and reproducing the spatial information of soundscapes

    SPEECH ACQUISITION IN NOISY ENVIRONMENTS USING DUAL MICROPHONE ARRAYS

    Get PDF
    Subject of Research.The paper deals with the practical aspects of distant speech acquisition in complex noisy environments using dual microphone arrays (MA2). The non-adaptive frequency-domain algorithms are described. The theory of MA2 is well developed so far, but the application of MA2 in specific conditions requires special consideration. The scenarios of point coherent interference and spatially distributed noise are studied.Methods. The comparison of differential algorithms and delay-and-sum algorithm is presented. The main properties of MA2 with summation algorithm and differential algorithms are researched on the basis of analytical models. Algorithms were tested on anechoic chamber recordings. The efficiency of the algorithms has been studied on recordings made near the street with intensive traffic. Main Results. The experimental results show the advantage of differential algorithms over delay-and-sum algorithm of both noise and interference suppression. For different variants of differential algorithms, street noise suppression about 10-12 dB is achieved. An additional advantage of differential algorithms is the possibility of null forming in the direction of a point source of interference. Practical Relevance. The results obtained may be used in hands free communication devices, camera equipment, portable recording devices, in acoustic monitoring systems. The results of the analysis of MA2 algorithms can also be used in the development of compact microphone arrays, as well as microphone arrays with a large number of elements

    FPGA-based architectures for acoustic beamforming with microphone arrays : trends, challenges and research opportunities

    Get PDF
    Over the past decades, many systems composed of arrays of microphones have been developed to satisfy the quality demanded by acoustic applications. Such microphone arrays are sound acquisition systems composed of multiple microphones used to sample the sound field with spatial diversity. The relatively recent adoption of Field-Programmable Gate Arrays (FPGAs) to manage the audio data samples and to perform the signal processing operations such as filtering or beamforming has lead to customizable architectures able to satisfy the most demanding computational, power or performance acoustic applications. The presented work provides an overview of the current FPGA-based architectures and how FPGAs are exploited for different acoustic applications. Current trends on the use of this technology, pending challenges and open research opportunities on the use of FPGAs for acoustic applications using microphone arrays are presented and discussed

    Perception of Reverberation in Domestic and Automotive Environments

    Get PDF
    nrpages: 227status: publishe

    A Subband Hybrid Beamforming for In-car Speech Enhancement

    Get PDF
    Publication in the conference proceedings of EUSIPCO, Bucharest, Romania, 201

    Geometrical Acoustics Simulations for Ambisonics Auralization of a Car Sound System at High Frequency

    Get PDF
    Nowadays, numerical simulations are the key tool for car audio systems and interiors design, since they allow estimating the acoustic response, thus the listening experience. This requires simulating the transfer path between each loudspeaker of the sound system and the listening position, which may be described, for instance, through a spherical harmonic expansion of the sound field; hence, permitting to auralize the sound system through real-time binaural decoding of the Ambisonics format over a head-tracked Head Mounted Display (HMD). In this paper, two numerical methods were compared for calculating the spatial impulse responses in High Order Ambisonics (HOA) format: ray tracing and pyramid tracing, respectively implemented in Comsol Multiphysics and Ramsete. The latter is equipped with a built-in post-processor capable to compute multichannel impulse responses in various formats including Ambisonics up to fifth order. An external post-processing tool was developed to calculate the Ambisonics impulse responses of Comsol Multiphysics simulations. First, the two methods were cross validated with two test cases: free field propagation and a room model. Results were compared in terms of time of arrival (ToA) of the direct sound, reverberation times, octave band spectra and accuracy of the source localization. Afterwards, the sound system of an existing high-end car was simulated. The results were compared with a set of experimental measurements performed inside the cockpit of the real car, employing a spherical microphone array

    Real-time sound synthesis of pass-by noise: comparison of spherical harmonics and time-varying filters

    Get PDF
    This paper proposes and compares two sound synthesis techniques to render a moving source for a fixed receiver position based on indoor pass-by noise measurements. The approaches are based on the time-varying infinite impulse response (IIR) filtering and spherical harmonics (SH) representation. The central contribution of the work is a framework for realistic moving source sound synthesis based on transfer functions measured using static far-field microphone arrays. While the SHs require a circular microphone array and a free-field propagation (delay, geometric spread), the IIR filtering relies on far-field microphones that correspond to the propagation path of the moving source. Both frameworks aim to provide accurate sound pressure levels in the far-field that comply with standards. Moreover, the frameworks can be extended to additional sources and filters (e.g. sound barriers) to create different moving source scenarios by removing the room size constraint. The results of the two sound synthesis approaches are preliminary evaluated and compared on a vehicle pass-by noise dataset and it is shown that both approaches are capable of accurately and efficiently synthesize a moving source

    Clustering Inverse Beamforming and multi-domain acoustic imaging approaches for vehicles NVH

    Get PDF
    Il rumore percepito all’interno della cabina di un veicolo è un aspetto molto rilevante nella valutazione della sua qualità complessiva. Metodi sperimentali di acoustic imaging, quali beamforming e olografia acustica, sono usati per identificare le principali sorgenti che contribuiscono alla rumorosità percepita all’interno del veicolo. L’obiettivo della tesi proposta è di fornire strumenti per effettuare dettagliate analisi quantitative tramite tali tecniche, ad oggi relegate alle fasi di studio preliminare, proponendo un approccio modulare che si avvale di analisi dei fenomeni vibro-acustici nel dominio della frequenza, del tempo e dell’angolo di rotazione degli elementi rotanti tipicamente presenti in un veicolo. Ciò permette di ridurre tempi e costi della progettazione, garantendo, al contempo, una maggiore qualità del pacchetto vibro-acustico. L’innovativo paradigma proposto prevede l’uso combinato di algoritmi di pre- e post- processing con tecniche inverse di acoustic imaging per lo studio di rilevanti problematiche quali l’identificazione di sorgenti sonore esterne o interne all’abitacolo e del rumore prodotto da dispositivi rotanti. Principale elemento innovativo della tesi è la tecnica denominata Clustering Inverse Beamforming. Essa si basa su un approccio statistico che permette di incrementare l’accuratezza (range dinamico, localizzazione e quantificazione) di una immagine acustica tramite la combinazione di soluzioni, del medesimo problema inverso, ottenute considerando diversi sotto-campioni dell’informazione sperimentale disponibile, variando, in questo modo, in maniera casuale la sua formulazione matematica. Tale procedimento garantisce la ricostruzione nel dominio della frequenza e del tempo delle sorgenti sonore identificate. Un metodo innovativo è stato inoltre proposto per la ricostruzione, ove necessario, di sorgenti sonore nel dominio dell’angolo. I metodi proposti sono stati supportati da argomentazioni teoriche e validazioni sperimentali su scala accademica e industriale.The interior sound perceived in vehicle cabins is a very important attribute for the user. Experimental acoustic imaging methods such as beamforming and Near-field Acoustic Holography are used in vehicles noise and vibration studies because they are capable of identifying the noise sources contributing to the overall noise perceived inside the cabin. However these techniques are often relegated to the troubleshooting phase, thus requiring additional experiments for more detailed NVH analyses. It is therefore desirable that such methods evolve towards more refined solutions capable of providing a larger and more detailed information. This thesis proposes a modular and multi-domain approach involving direct and inverse acoustic imaging techniques for providing quantitative and accurate results in frequency, time and angle domain, thus targeting three relevant types of problems in vehicles NVH: identification of exterior sources affecting interior noise, interior noise source identification, analysis of noise sources produced by rotating machines. The core finding of this thesis is represented by a novel inverse acoustic imaging method named Clustering Inverse Beamforming (CIB). The method grounds on a statistical processing based on an Equivalent Source Method formulation. In this way, an accurate localization, a reliable ranking of the identified sources in frequency domain and their separation into uncorrelated phenomena is obtained. CIB is also exploited in this work for allowing the reconstruction of the time evolution of the sources sought. Finally a methodology for decomposing the acoustic image of the sound field generated by a rotating machine as a function of the angular evolution of the machine shaft is proposed. This set of findings aims at contributing to the advent of a new paradigm of acoustic imaging applications in vehicles NVH, supporting all the stages of the vehicle design with time-saving and cost-efficient experimental techniques. The proposed innovative approaches are validated on several simulated and real experiments
    • …
    corecore