108 research outputs found

    A combined MMSE-ML detection for a spectrally efficient non orthogonal FDM signal

    Get PDF
    In this paper, we investigate the possibility of reliable and computationally efficient detection for spectrally efficient non-orthogonal Multiplexing (FDM) system, exhibiting varying levels of intercarrier interference. Optimum detection is based on the Maximum Likelihood (ML) principle. However, ML is impractical due to its computational complexity. On the other hand, linear detection techniques such as Zero Forcing (ZF) and Minimum Mean Square Error (MMSE) exhibit poor performance. Consequently, we explore the combination of MMSE estimation with ML estimation around a neighborhood of the MMSE estimate. We evaluate the performance of the different schemes in Additive White Gaussian Noise (AWGN), with reference to the number of FDM carriers and their frequency separation. The combined MMSE-ML scheme achieves a near optimum error performance with polynomial complexity for a small number of BPSK FDM carriers. For QPSK modulation the performance of the proposed system improves for a large number of ML comparisons. In all cases, the detectability of the FDM signal is bounded by the signal dimension and the carriers frequency distance

    FPGA design considerations for non-orthogonal FDM signal detection

    Get PDF

    The First 15 Years of SEFDM: A Brief Survey

    Get PDF
    Spectrally efficient frequency division multiplexing (SEFDM) is a multi-carrier signal waveform, which achieves higher spectral efficiency, relative to conventional orthogonal frequency division multiplexing (OFDM), by violating the orthogonality of its sub-carriers. This survey provides the history of SEFDM development since its inception in 2003, covering fundamentals and concepts, wireless and optical communications applications, circuit design and experimental testbeds. We focus on work done at UCL and outline work done other universities and research laboratories worldwide. We outline techniques to improve the performance of SEFDM and its practical utility with focus on signal generation, detection and channel estimation

    A practical system for improved efficiency in frequency division multiplexed wireless networks

    Get PDF
    Spectral efficiency is a key design issue for all wireless communication systems. Orthogonal frequency division multiplexing (OFDM) is a very well-known technique for efficient data transmission over many carriers overlapped in frequency. Recently, several studies have appeared that describe spectrally efficient variations of multi-carrier systems where the condition of orthogonality is dropped. Proposed techniques suffer from two weaknesses: firstly, the complexity of generating the signal is increased. Secondly, the signal detection is computationally demanding. Known methods suffer either unusably high complexity or high error rates because of the inter-carrier interference. This study addresses both problems by proposing new transmitter and receiver architectures whose design is based on using the simplification that a rational spectrally efficient frequency division multiplexing (SEFDM) system can be treated as a set of overlapped and interleaving OFDM systems. The efficacy of the proposed designs is shown through detailed simulation of systems with different signal types and carrier dimensions. The decoder is heuristic but in practice produces very good results that are close to the theoretical best performance in a variety of settings. The system is able to produce efficiency gains of up to 20% with negligible impact on the required signal-to-noise ratio

    Spectrally efficient FDM communication signals and transceivers: design, mathematical modelling and system optimization

    Get PDF
    This thesis addresses theoretical, mathematical modelling and design issues of Spectrally Efficient FDM (SEFDM) systems. SEFDM systems propose bandwidth savings when compared to Orthogonal FDM (OFDM) systems by multiplexing multiple non-orthogonal overlapping carriers. Nevertheless, the deliberate collapse of orthogonality poses significant challenges on the SEFDM system in terms of performance and complexity, both issues are addressed in this work. This thesis first investigates the mathematical properties of the SEFDM system and reveals the links between the system conditioning and its main parameters through closed form formulas derived for the Intercarrier Interference (ICI) and the system generating matrices. A rigorous and efficient mathematical framework, to represent non-orthogonal signals using Inverse Discrete Fourier Transform (IDFT) blocks, is proposed. This is subsequently used to design simple SEFDM transmitters and to realize a new Matched Filter (MF) based demodulator using the Discrete Fourier Transforms (DFT), thereby substantially simplifying the transmitter and demodulator design and localizing complexity at detection stage with no premium at performance. Operation is confirmed through the derivation and numerical verification of optimal detectors in the form of Maximum Likelihood (ML) and Sphere Decoder (SD). Moreover, two new linear detectors that address the ill conditioning of the system are proposed: the first based on the Truncated Singular Value Decomposition (TSVD) and the second accounts for selected ICI terms and termed Selective Equalization (SelE). Numerical investigations show that both detectors substantially outperform existing linear detection techniques. Furthermore, the use of the Fixed Complexity Sphere Decoder (FSD) is proposed to further improve performance and avoid the variable complexity of the SD. Ultimately, a newly designed combined FSD-TSVD detector is proposed and shown to provide near optimal error performance for bandwidth savings of 20% with reduced and fixed complexity. The thesis also addresses some practical considerations of the SEFDM systems. In particular, mathematical and numerical investigations have shown that the SEFDM signal is prone to high Peak to Average Power Ratio (PAPR) that can lead to significant performance degradations. Investigations of PAPR control lead to the proposal of a new technique, termed SLiding Window (SLW), utilizing the SEFDM signal structure which shows superior efficacy in PAPR control over conventional techniques with lower complexity. The thesis also addresses the performance of the SEFDM system in multipath fading channels confirming favourable performance and practicability of implementation. In particular, a new Partial Channel Estimator (PCE) that provides better estimation accuracy is proposed. Furthermore, several low complexity linear and iterative joint channel equalizers and symbol detectors are investigated in fading channels conditions with the FSD-TSVD joint equalization and detection with PCE obtained channel estimate facilitating near optimum error performance, close to that of OFDM for bandwidth savings of 25%. Finally, investigations of the precoding of the SEFDM signal demonstrate a potential for complexity reduction and performance improvement. Overall, this thesis provides the theoretical basis from which practical designs are derived to pave the way to the first practical realization of SEFDM systems

    Advanced transceivers for spectrally-efficient communications

    Get PDF
    In this thesis, we will consider techniques to improve the spectral efficiency of digital communication systems, operating on the whole transceiver scheme. First, we will focus on receiver schemes having detection algorithms with a complexity constraint. We will optimize the parameters of the reduced detector with the aim of maximizing the achievable information rate. Namely, we will adopt the channel shortening technique. Then, we will focus on a technique that is getting very popular in the last years (although presented for the first time in 1975): faster-than-Nyquist signaling, and its extension which is time packing. Time packing is a very simple technique that consists in introducing intersymbol interference on purpose with the aim of increasing the spectral efficiency of finite order constellations. Finally, in the last chapters we will combine all the presented techniques, and we will consider their application to satellite channels.Comment: PhD Thesi

    Transmission Experiment of Bandwidth Compressed Carrier Aggregation in a Realistic Fading Channel

    Get PDF
    In this paper, an experimental testbed is designed to evaluate the performance of a bandwidth compressed multicarrier technique termed spectrally efficient frequency division multiplexing (SEFDM) in a carrier aggregation (CA) scenario1. Unlike orthogonal frequency division multiplexing (OFDM), SEFDM is a non-orthogonal waveform which, relative to OFDM, packs more sub-carriers in a given bandwidth, thereby improving spectral efficiency. CA is a long term evolution-advanced (LTE-Advanced) featured technique that offers a higher throughput by aggregating multiple legacy radio bands. Considering the scarcity of radio spectrum, SEFDM signals can be utilized to enhance CA performance. The combination of the two techniques results in a larger number of aggregated component carriers (CCs) and therefore increased data rate in a given bandwidth with no additional spectral allocation. It is experimentally shown that CA-SEFDM can aggregate up to 7 CCs in a limited bandwidth while CA-OFDM can only put 5 CCs in the same bandwidth. In this work, LTE-like framed CA-SEFDM signals are generated and delivered through a realistic LTE channel. A complete experimental setup is described together with error performance and effective spectral efficiency comparisons. Experimental results show that the measured BER performance for CA-SEFDM is very close to CA-OFDM and the effective spectral efficiency of CA-SEFDM can be substantially higher than that of CA-OFDM

    Spectrally efficient multicarrier communication systems: signal detection, mathematical modelling and optimisation

    Get PDF
    This thesis considers theoretical, analytical and engineering design issues relating to non-orthogonal Spectrally Efficient Frequency Division Multiplexing (SEFDM) communication systems that exhibit significant spectral merits when compared to Orthogonal FDM (OFDM) schemes. Alas, the practical implementation of such systems raises significant challenges, with the receivers being the bottleneck. This research explores detection of SEFDM signals. The mathematical foundations of such signals lead to proposals of different orthonormalisation techniques as required at the receivers of non-orthogonal FDM systems. To address SEFDM detection, two approaches are considered: either attempt to solve the problem optimally by taking advantage of special cases properties or to apply sub-optimal techniques that offer reduced complexities at the expense of error rates degradation. Initially, the application of sub-optimal linear detection techniques, such as Zero Forcing (ZF) and Minimum Mean Squared Error (MMSE), is examined analytically and by detailed modelling. To improve error performance a heuristic algorithm, based on a local search around an MMSE estimate, is designed by combining MMSE with Maximum Likelihood (ML) detection. Yet, this new method appears to be efficient for BPSK signals only. Hence, various variants of the sphere decoder (SD) are investigated. A Tikhonov regularised SD variant achieves an optimal solution for the detection of medium size signals in low noise regimes. Detailed modelling shows the SD detector to be well suited to the SEFDM detection, however, with complexity increasing with system interference and noise. A new design of a detector that offers a good compromise between computational complexity and error rate performance is proposed and tested through modelling and simulation. Standard reformulation techniques are used to relax the original optimal detection problem to a convex Semi-Definite Program (SDP) that can be solved in polynomial time. Although SDP performs better than other linear relaxations, such as ZF and MMSE, its deviation from optimality also increases with the deterioration of the system inherent interference. To improve its performance a heuristic algorithm based on a local search around the SDP estimate is further proposed. Finally, a modified SD is designed to implement faster than the local search SDP concept. The new method/algorithm, termed the pruned or constrained SD, achieves the detection of realistic SEFDM signals in noisy environments
    • …
    corecore