3,912 research outputs found

    Faster Graph Coloring in Polynomial Space

    Full text link
    We present a polynomial-space algorithm that computes the number independent sets of any input graph in time O(1.1387n)O(1.1387^n) for graphs with maximum degree 3 and in time O(1.2355n)O(1.2355^n) for general graphs, where n is the number of vertices. Together with the inclusion-exclusion approach of Bj\"orklund, Husfeldt, and Koivisto [SIAM J. Comput. 2009], this leads to a faster polynomial-space algorithm for the graph coloring problem with running time O(2.2355n)O(2.2355^n). As a byproduct, we also obtain an exponential-space O(1.2330n)O(1.2330^n) time algorithm for counting independent sets. Our main algorithm counts independent sets in graphs with maximum degree 3 and no vertex with three neighbors of degree 3. This polynomial-space algorithm is analyzed using the recently introduced Separate, Measure and Conquer approach [Gaspers & Sorkin, ICALP 2015]. Using Wahlstr\"om's compound measure approach, this improvement in running time for small degree graphs is then bootstrapped to larger degrees, giving the improvement for general graphs. Combining both approaches leads to some inflexibility in choosing vertices to branch on for the small-degree cases, which we counter by structural graph properties

    Coloring random graphs

    Full text link
    We study the graph coloring problem over random graphs of finite average connectivity cc. Given a number qq of available colors, we find that graphs with low connectivity admit almost always a proper coloring whereas graphs with high connectivity are uncolorable. Depending on qq, we find the precise value of the critical average connectivity cqc_q. Moreover, we show that below cqc_q there exist a clustering phase c∈[cd,cq]c\in [c_d,c_q] in which ground states spontaneously divide into an exponential number of clusters and where the proliferation of metastable states is responsible for the onset of complexity in local search algorithms.Comment: 4 pages, 1 figure, version to app. in PR

    A Coloring Algorithm for Disambiguating Graph and Map Drawings

    Full text link
    Drawings of non-planar graphs always result in edge crossings. When there are many edges crossing at small angles, it is often difficult to follow these edges, because of the multiple visual paths resulted from the crossings that slow down eye movements. In this paper we propose an algorithm that disambiguates the edges with automatic selection of distinctive colors. Our proposed algorithm computes a near optimal color assignment of a dual collision graph, using a novel branch-and-bound procedure applied to a space decomposition of the color gamut. We give examples demonstrating the effectiveness of this approach in clarifying drawings of real world graphs and maps

    Coloring Artemis graphs

    Get PDF
    We consider the class A of graphs that contain no odd hole, no antihole, and no ``prism'' (a graph consisting of two disjoint triangles with three disjoint paths between them). We show that the coloring algorithm found by the second and fourth author can be implemented in time O(n^2m) for any graph in A with n vertices and m edges, thereby improving on the complexity proposed in the original paper

    Optimal Online Edge Coloring of Planar Graphs with Advice

    Full text link
    Using the framework of advice complexity, we study the amount of knowledge about the future that an online algorithm needs to color the edges of a graph optimally, i.e., using as few colors as possible. For graphs of maximum degree Δ\Delta, it follows from Vizing's Theorem that O(mlog⁡Δ)O(m\log \Delta) bits of advice suffice to achieve optimality, where mm is the number of edges. We show that for graphs of bounded degeneracy (a class of graphs including e.g. trees and planar graphs), only O(m)O(m) bits of advice are needed to compute an optimal solution online, independently of how large Δ\Delta is. On the other hand, we show that Ω(m)\Omega (m) bits of advice are necessary just to achieve a competitive ratio better than that of the best deterministic online algorithm without advice. Furthermore, we consider algorithms which use a fixed number of advice bits per edge (our algorithm for graphs of bounded degeneracy belongs to this class of algorithms). We show that for bipartite graphs, any such algorithm must use at least Ω(mlog⁡Δ)\Omega(m\log \Delta) bits of advice to achieve optimality.Comment: CIAC 201
    • 

    corecore