2 research outputs found

    A review of the role of sensors in mobile context-aware recommendation systems

    Get PDF
    Recommendation systems are specialized in offering suggestions about specific items of different types (e.g., books, movies, restaurants, and hotels) that could be interesting for the user. They have attracted considerable research attention due to their benefits and also their commercial interest. Particularly, in recent years, the concept of context-aware recommendation system has appeared to emphasize the importance of considering the context of the situations in which the user is involved in order to provide more accurate recommendations. The detection of the context requires the use of sensors of different types, which measure different context variables. Despite the relevant role played by sensors in the development of context-aware recommendation systems, sensors and recommendation approaches are two fields usually studied independently. In this paper, we provide a survey on the use of sensors for recommendation systems. Our contribution can be seen from a double perspective. On the one hand, we overview existing techniques used to detect context factors that could be relevant for recommendation. On the other hand, we illustrate the interest of sensors by considering different recommendation use cases and scenarios

    FINE-GRAINED EMOTION DETECTION IN MICROBLOG TEXT

    Get PDF
    Automatic emotion detection in text is concerned with using natural language processing techniques to recognize emotions expressed in written discourse. Endowing computers with the ability to recognize emotions in a particular kind of text, microblogs, has important applications in sentiment analysis and affective computing. In order to build computational models that can recognize the emotions represented in tweets we need to identify a set of suitable emotion categories. Prior work has mainly focused on building computational models for only a small set of six basic emotions (happiness, sadness, fear, anger, disgust, and surprise). This thesis describes a taxonomy of 28 emotion categories, an expansion of these six basic emotions, developed inductively from data. This set of 28 emotion categories represents a set of fine-grained emotion categories that are representative of the range of emotions expressed in tweets, microblog posts on Twitter. The ability of humans to recognize these fine-grained emotion categories is characterized using inter-annotator reliability measures based on annotations provided by expert and novice annotators. A set of 15,553 human-annotated tweets form a gold standard corpus, EmoTweet-28. For each emotion category, we have extracted a set of linguistic cues (i.e., punctuation marks, emoticons, emojis, abbreviated forms, interjections, lemmas, hashtags and collocations) that can serve as salient indicators for that emotion category. We evaluated the performance of automatic classification techniques on the set of 28 emotion categories through a series of experiments using several classifier and feature combinations. Our results shows that it is feasible to extend machine learning classification to fine-grained emotion detection in tweets (i.e., as many as 28 emotion categories) with results that are comparable to state-of-the-art classifiers that detect six to eight basic emotions in text. Classifiers using features extracted from the linguistic cues associated with each category equal or better the performance of conventional corpus-based and lexicon-based features for fine-grained emotion classification. This thesis makes an important theoretical contribution in the development of a taxonomy of emotion in text. In addition, this research also makes several practical contributions, particularly in the creation of language resources (i.e., corpus and lexicon) and machine learning models for fine-grained emotion detection in text
    corecore