1,381 research outputs found

    Parallel Maximum Clique Algorithms with Applications to Network Analysis and Storage

    Full text link
    We propose a fast, parallel maximum clique algorithm for large sparse graphs that is designed to exploit characteristics of social and information networks. The method exhibits a roughly linear runtime scaling over real-world networks ranging from 1000 to 100 million nodes. In a test on a social network with 1.8 billion edges, the algorithm finds the largest clique in about 20 minutes. Our method employs a branch and bound strategy with novel and aggressive pruning techniques. For instance, we use the core number of a vertex in combination with a good heuristic clique finder to efficiently remove the vast majority of the search space. In addition, we parallelize the exploration of the search tree. During the search, processes immediately communicate changes to upper and lower bounds on the size of maximum clique, which occasionally results in a super-linear speedup because vertices with large search spaces can be pruned by other processes. We apply the algorithm to two problems: to compute temporal strong components and to compress graphs.Comment: 11 page

    Kernel Graph Convolutional Neural Networks

    Full text link
    Graph kernels have been successfully applied to many graph classification problems. Typically, a kernel is first designed, and then an SVM classifier is trained based on the features defined implicitly by this kernel. This two-stage approach decouples data representation from learning, which is suboptimal. On the other hand, Convolutional Neural Networks (CNNs) have the capability to learn their own features directly from the raw data during training. Unfortunately, they cannot handle irregular data such as graphs. We address this challenge by using graph kernels to embed meaningful local neighborhoods of the graphs in a continuous vector space. A set of filters is then convolved with these patches, pooled, and the output is then passed to a feedforward network. With limited parameter tuning, our approach outperforms strong baselines on 7 out of 10 benchmark datasets.Comment: Accepted at ICANN '1
    • …
    corecore