52,010 research outputs found

    Optimal locally repairable codes of distance 33 and 44 via cyclic codes

    Get PDF
    Like classical block codes, a locally repairable code also obeys the Singleton-type bound (we call a locally repairable code {\it optimal} if it achieves the Singleton-type bound). In the breakthrough work of \cite{TB14}, several classes of optimal locally repairable codes were constructed via subcodes of Reed-Solomon codes. Thus, the lengths of the codes given in \cite{TB14} are upper bounded by the code alphabet size qq. Recently, it was proved through extension of construction in \cite{TB14} that length of qq-ary optimal locally repairable codes can be q+1q+1 in \cite{JMX17}. Surprisingly, \cite{BHHMV16} presented a few examples of qq-ary optimal locally repairable codes of small distance and locality with code length achieving roughly q2q^2. Very recently, it was further shown in \cite{LMX17} that there exist qq-ary optimal locally repairable codes with length bigger than q+1q+1 and distance propositional to nn. Thus, it becomes an interesting and challenging problem to construct new families of qq-ary optimal locally repairable codes of length bigger than q+1q+1. In this paper, we construct a class of optimal locally repairable codes of distance 33 and 44 with unbounded length (i.e., length of the codes is independent of the code alphabet size). Our technique is through cyclic codes with particular generator and parity-check polynomials that are carefully chosen

    Xing-Ling Codes, Duals of their Subcodes, and Good Asymmetric Quantum Codes

    Full text link
    A class of powerful qq-ary linear polynomial codes originally proposed by Xing and Ling is deployed to construct good asymmetric quantum codes via the standard CSS construction. Our quantum codes are qq-ary block codes that encode kk qudits of quantum information into nn qudits and correct up to \flr{(d_{x}-1)/2} bit-flip errors and up to \flr{(d_{z}-1)/2} phase-flip errors.. In many cases where the length (q2−q)/2≤n≤(q2+q)/2(q^{2}-q)/2 \leq n \leq (q^{2}+q)/2 and the field size qq are fixed and for chosen values of dx∈{2,3,4,5}d_{x} \in \{2,3,4,5\} and dz≥δd_{z} \ge \delta, where δ\delta is the designed distance of the Xing-Ling (XL) codes, the derived pure qq-ary asymmetric quantum CSS codes possess the best possible size given the current state of the art knowledge on the best classical linear block codes.Comment: To appear in Designs, Codes and Cryptography (accepted Sep. 27, 2013

    Efficient Systematic Encoding of Non-binary VT Codes

    Full text link
    Varshamov-Tenengolts (VT) codes are a class of codes which can correct a single deletion or insertion with a linear-time decoder. This paper addresses the problem of efficient encoding of non-binary VT codes, defined over an alphabet of size q>2q >2. We propose a simple linear-time encoding method to systematically map binary message sequences onto VT codewords. The method provides a new lower bound on the size of qq-ary VT codes of length nn.Comment: This paper will appear in the proceedings of ISIT 201

    On MDS Negacyclic LCD Codes

    Full text link
    Linear codes with complementary duals (LCD) have a great deal of significance amongst linear codes. Maximum distance separable (MDS) codes are also an important class of linear codes since they achieve the greatest error correcting and detecting capabilities for fixed length and dimension. The construction of linear codes that are both LCD and MDS is a hard task in coding theory. In this paper, we study the constructions of LCD codes that are MDS from negacyclic codes over finite fields of odd prime power qq elements. We construct four families of MDS negacyclic LCD codes of length n∣q−12n|\frac{{q-1}}{2}, n∣q+12n|\frac{{q+1}}{2} and a family of negacyclic LCD codes of length n=q−1n=q-1. Furthermore, we obtain five families of q2q^{2}-ary Hermitian MDS negacyclic LCD codes of length n∣(q−1)n|\left( q-1\right) and four families of Hermitian negacyclic LCD codes of length n=q2+1.n=q^{2}+1. For both Euclidean and Hermitian cases the dimensions of these codes are determined and for some classes the minimum distances are settled. For the other cases, by studying qq and q2q^{2}-cyclotomic classes we give lower bounds on the minimum distance

    Multiply Constant-Weight Codes and the Reliability of Loop Physically Unclonable Functions

    Full text link
    We introduce the class of multiply constant-weight codes to improve the reliability of certain physically unclonable function (PUF) response. We extend classical coding methods to construct multiply constant-weight codes from known qq-ary and constant-weight codes. Analogues of Johnson bounds are derived and are shown to be asymptotically tight to a constant factor under certain conditions. We also examine the rates of the multiply constant-weight codes and interestingly, demonstrate that these rates are the same as those of constant-weight codes of suitable parameters. Asymptotic analysis of our code constructions is provided
    • …
    corecore