3 research outputs found

    Semi-supervised adaptation of motor imagery based BCI systems (Hayali motor hareketleri tabanlı BBA sistemlerinde yarı güdümlü uyarlama)

    Get PDF
    One of the main problems in Brain Computer Interface (BCI) systems is the non-stationary behavior of the electroencephalography (EEG) signals causing problems in real time applications. Another common problem in BCI systems is the situation where the labeled data are scarce. In this study, we take a semi-supervised learning perspective and propose solving both types of problems by updating the BCI system with labels obtained from the outputs of the classifier. To test the approach, data from motor imagery BCI system are used. Attributes extracted from EEG signals are classified with Linear Discriminant Analysis (LDA) and Support Vector Machines (SVM). With respect to the static classifiers, accuracy was improved approximately 4% using the proposed adaptation approach in the case of a training dataset. Even though the difference between the performance of static and adaptive classifiers decreases as the size of training data increases, the accuracy of our proposed adaptive classifier remains higher. The proposed approach has also improved the performance of a BCI system around 4% in the case of non-stationary signals as well

    Errare machinale est: The use of error-related potentials in brain-machine interfaces

    Get PDF
    The ability to recognize errors is crucial for efficient behavior. Numerous studies have identified electrophysiological correlates of error recognition in the human brain (error-related potentials, ErrPs). Consequently, it has been proposed to use these signals to improve human-computer interaction (HCI) or brain-machine interfacing (BMI). Here, we present a review of over a decade of developments towards this goal. This body of work provides consistent evidence that ErrPs can be successfully detected on a single-trial basis, and that they can be effectively used in both HCI and BMI applications. We first describe the ErrP phenomenon and follow up with an analysis of different strategies to increase the robustness of a system by incorporating single-trial ErrP recognition, either by correcting the machine's actions or by providing means for its error-based adaptation. These approaches can be applied both when the user employs traditional HCI input devices or in combination with another BMI channel. Finally, we discuss the current challenges that have to be overcome in order to fully integrate ErrPs into practical applications. This includes, in particular, the characterization of such signals during real(istic) applications, as well as the possibility of extracting richer information from them, going beyond the time-locked decoding that dominates current approaches
    corecore