89 research outputs found

    RowHammer: Reliability Analysis and Security Implications

    Full text link
    As process technology scales down to smaller dimensions, DRAM chips become more vulnerable to disturbance, a phenomenon in which different DRAM cells interfere with each other's operation. For the first time in academic literature, our ISCA paper exposes the existence of disturbance errors in commodity DRAM chips that are sold and used today. We show that repeatedly reading from the same address could corrupt data in nearby addresses. More specifically: When a DRAM row is opened (i.e., activated) and closed (i.e., precharged) repeatedly (i.e., hammered), it can induce disturbance errors in adjacent DRAM rows. This failure mode is popularly called RowHammer. We tested 129 DRAM modules manufactured within the past six years (2008-2014) and found 110 of them to exhibit RowHammer disturbance errors, the earliest of which dates back to 2010. In particular, all modules from the past two years (2012-2013) were vulnerable, which implies that the errors are a recent phenomenon affecting more advanced generations of process technology. Importantly, disturbance errors pose an easily-exploitable security threat since they are a breach of memory protection, wherein accesses to one page (mapped to one row) modifies the data stored in another page (mapped to an adjacent row).Comment: This is the summary of the paper titled "Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors" which appeared in ISCA in June 201

    DNA Pre-alignment Filter using Processing Near Racetrack Memory

    Full text link
    Recent DNA pre-alignment filter designs employ DRAM for storing the reference genome and its associated meta-data. However, DRAM incurs increasingly high energy consumption background and refresh energy as devices scale. To overcome this problem, this paper explores a design with racetrack memory (RTM)--an emerging non-volatile memory that promises higher storage density, faster access latency, and lower energy consumption. Multi-bit storage cells in RTM are inherently sequential and thus require data placement strategies to mitigate the performance and energy impacts of shifting during data accesses. We propose a near-memory pre-alignment filter with a novel data mapping and several shift reduction strategies designed explicitly for RTM. On a set of four input genomes from the 1000 Genome Project, our approach improves performance and energy efficiency by 68% and 52%, respectively, compared to the state of the art proposed DRAM-based architecture
    • …
    corecore