73 research outputs found

    A Brachiating Robot Controller

    Get PDF
    We report on our empirical studies of a new controller for a two-link brachiating robot. Motivated by the pendulum-like motion of an ape\u27s brachiation, we encode this task as the output of a target dynamical system. Numerical simulations indicate that the resulting controller solves a number of brachiation problems that we term the ladder, swing-up, and rope problems. Preliminary analysis provides some explanation for this success. The proposed controller is implemented on a physical system in our laboratory. The robot achieves behaviors including swing locomotion and swing up and is capable of continuous locomotion over several rungs of a ladder. We discuss a number of formal questions whose answers will be required to gain a full understanding of the strengths and weaknesses of this approach

    Robust Control Synthesis and Verification for Wire-Borne Underactuated Brachiating Robots Using Sum-of-Squares Optimization

    Full text link
    Control of wire-borne underactuated brachiating robots requires a robust feedback control design that can deal with dynamic uncertainties, actuator constraints and unmeasurable states. In this paper, we develop a robust feedback control for brachiating on flexible cables, building on previous work on optimal trajectory generation and time-varying LQR controller design. We propose a novel simplified model for approximation of the flexible cable dynamics, which enables inclusion of parametric model uncertainties in the system. We then use semidefinite programming (SDP) and sum-of-squares (SOS) optimization to synthesize a time-varying feedback control with formal robustness guarantees to account for model uncertainties and unmeasurable states in the system. Through simulation, hardware experiments and comparison with a time-varying LQR controller, it is shown that the proposed robust controller results in relatively large robust backward reachable sets and is able to reliably track a pre-generated optimal trajectory and achieve the desired brachiating motion in the presence of parametric model uncertainties, actuator limits, and unobservable states.Comment: 8 pages, 12 figures, 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS

    Cable Estimation-Based Control for Wire-Borne Underactuated Brachiating Robots: A Combined Direct-Indirect Adaptive Robust Approach

    Full text link
    In this paper, we present an online adaptive robust control framework for underactuated brachiating robots traversing flexible cables. Since the dynamic model of a flexible body is unknown in practice, we propose an indirect adaptive estimation scheme to approximate the unknown dynamic effects of the flexible cable as an external force with parametric uncertainties. A boundary layer-based sliding mode control is then designed to compensate for the residual unmodeled dynamics and time-varying disturbances, in which the control gain is updated by an auxiliary direct adaptive control mechanism. Stability analysis and derivation of adaptation laws are carried out through a Lyapunov approach, which formally guarantees the stability and tracking performance of the robot-cable system. Simulation experiments and comparison with a baseline controller show that the combined direct-indirect adaptive robust control framework achieves reliable tracking performance and adaptive system identification, enabling the robot to traverse flexible cables in the presence of unmodeled dynamics, parametric uncertainties and unstructured disturbances.Comment: 8 pages, 8 figures, 2020 IEEE Conference on Decision and Control (CDC

    A Hybrid Swing up Controller for a Two-link Brachiating Robot

    Get PDF
    In this paper, we report on a hybrid scheme for regulating the swing up behavior of a two degree of freedom brachiating robot. In this controller, a previous target dynamics controller and a mechanical energy regulator are combined. The proposed controller guarantees the boundedness of the total energy of the system. Simulations suggest that this hybrid controller achieves much better regulation of the desired swing motion than the target dynamics method by itself

    Experimental Implementation of a Target Dynamics Controller on a Two-link Brachiating Robot

    Get PDF
    We report on our recent empirical success in the study of a two-link brachiating robot. The target dynamics controller developed in our previous work (1997) is implemented on a physical system in our laboratory. The swing locomotion and swing-up behavior of the robot as well as continuous locomotion have been successfully attained. The experimental results illustrate the effectiveness of our control strategy

    Preliminary studies of a second generation brachiation robot controller

    Get PDF
    We report on our preliminary studies of a new controller for a two-link brachiating robot. Motivated by the pendulum-like motion of an ape\u27s brachiation, we encode this task as the output of a target dynamical system . Numerical simulations indicate that the resulting controller solves a number of brachiating problems that we term the ladder , swing up and rope problems. Preliminary analysis provides some explanation for this success. We discuss a number of formal questions whose answers will be required to gain a full understanding of the strengths and weaknesses of this approach

    Design, modelling and control of a brachiating power line inspection robot

    Get PDF
    The inspection of power lines and associated hardware is vital to ensuring the reliability of the transmission and distribution network. The repetitive nature of the inspection tasks present a unique opportunity for the introduction of robotic platforms, which offer the ability to perform more systematic and detailed inspection than traditional methods. This lends itself to improved asset management automation, cost-effectiveness and safety for the operating crew. This dissertation presents the development of a prototype industrial brachiating robot. The robot is mechanically simple and capable of dynamically negotiating obstacles by brachiating. This is an improvement over current robotic platforms, which employ slow, high power static schemes for obstacle negotiation. Mathematical models of the robot were derived to understand the underlying dynamics of the system. These models were then used in the generation of optimal trajectories, using nonlinear optimisation techniques, for brachiating past line hardware. A physical robot was designed and manufactured to validate the brachiation manoeuvre. The robot was designed following classic mechanical design principles, with emphasis on functional design and robustness. System identification was used to capture the plant uncertainty and a feedback controller was designed to track the reference trajectory allowing for energy optimal brachiation swings. Finally, the robot was tested, starting with sub-system testing and ending with testing of a brachiation manoeuvre proving the prospective viability of the robot in an industrial environment

    Brachiation on a Ladder with Irregular Intervals

    Get PDF
    We have previously developed a brachiation controller that allows a two degree of freedom robot to swing from handhold to handhold on a horizontal ladder with evenly space rungs as well as swing up from a suspended posture using a target dynamics controller. In this paper, we extend this class of algorithms to handle the much more natural problem of locomotion over irregularly spaced handholds. Numerical simulations and laboratory experiments illustrate the effectiveness of this generalization

    Brachiating power line inspection robot: controller design and implementation

    Get PDF
    The prevalence of electrical transmission networks has led to an increase in productivity and prosperity. In 2014, estimates showed that the global electric power transmission network consisted of 5.5 million circuit kilometres (Ckm) of high-voltage transmission lines with a combined capacity of 17 million mega-volt ampere. The vastness of the global transmission grid presents a significant problem for infrastructure maintenance. The high maintenance costs, coupled with challenging terrain, provide an opportunity for autonomous inspection robots. The Brachiating Power Line Inspection Robot (BPLIR) with wheels [73] is a transmission line inspection robot. The BPLIR is the focus of this research and this dissertation tackles the problem of state estimation, adaptive trajectory generation and robust control for the BPLIR. A kinematics-based Kalman Filter state estimator was designed and implemented to determine the full system state. Instrumentation used for measurement consisted of 2 Inertial Measurement Units (IMUs). The advantages of utilising IMUs is that they are less susceptible to drift, have no moving parts and are not prone to misalignment errors. The use of IMU's in the design meant that absolute angles (link angles measured with respect to earth) could be estimated, enabling the BPLIR to navigate inclined slopes. Quantitative Feedback Control theory was employed to address the issue of parameter uncertainty during operation. The operating environment of the BPLIR requires it to be robust to environmental factors such as wind disturbance and uncertainty in joint friction over time. The resulting robust control system was able to compensate for uncertain system parameters and reject disturbances in simulation. An online trajectory generator (OTG), inspired by Raibert-style reverse-time symmetry[10], fed into the control system to drive the end effector to the power line by employing brachiation. The OTG produced two trajectories; one of which was reverse time symmetrical and; another which minimised the perpendicular distance between the end gripper and the power line. Linear interpolation between the two trajectories ensured a smooth bump-less trajectory for the BPLIR to follow
    • …
    corecore