4,006 research outputs found

    A Taxonomy of Big Data for Optimal Predictive Machine Learning and Data Mining

    Full text link
    Big data comes in various ways, types, shapes, forms and sizes. Indeed, almost all areas of science, technology, medicine, public health, economics, business, linguistics and social science are bombarded by ever increasing flows of data begging to analyzed efficiently and effectively. In this paper, we propose a rough idea of a possible taxonomy of big data, along with some of the most commonly used tools for handling each particular category of bigness. The dimensionality p of the input space and the sample size n are usually the main ingredients in the characterization of data bigness. The specific statistical machine learning technique used to handle a particular big data set will depend on which category it falls in within the bigness taxonomy. Large p small n data sets for instance require a different set of tools from the large n small p variety. Among other tools, we discuss Preprocessing, Standardization, Imputation, Projection, Regularization, Penalization, Compression, Reduction, Selection, Kernelization, Hybridization, Parallelization, Aggregation, Randomization, Replication, Sequentialization. Indeed, it is important to emphasize right away that the so-called no free lunch theorem applies here, in the sense that there is no universally superior method that outperforms all other methods on all categories of bigness. It is also important to stress the fact that simplicity in the sense of Ockham's razor non plurality principle of parsimony tends to reign supreme when it comes to massive data. We conclude with a comparison of the predictive performance of some of the most commonly used methods on a few data sets.Comment: 18 pages, 2 figures 3 table

    Bandwidth choice for nonparametric classification

    Full text link
    It is shown that, for kernel-based classification with univariate distributions and two populations, optimal bandwidth choice has a dichotomous character. If the two densities cross at just one point, where their curvatures have the same signs, then minimum Bayes risk is achieved using bandwidths which are an order of magnitude larger than those which minimize pointwise estimation error. On the other hand, if the curvature signs are different, or if there are multiple crossing points, then bandwidths of conventional size are generally appropriate. The range of different modes of behavior is narrower in multivariate settings. There, the optimal size of bandwidth is generally the same as that which is appropriate for pointwise density estimation. These properties motivate empirical rules for bandwidth choice.Comment: Published at http://dx.doi.org/10.1214/009053604000000959 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Class Proportion Estimation with Application to Multiclass Anomaly Rejection

    Full text link
    This work addresses two classification problems that fall under the heading of domain adaptation, wherein the distributions of training and testing examples differ. The first problem studied is that of class proportion estimation, which is the problem of estimating the class proportions in an unlabeled testing data set given labeled examples of each class. Compared to previous work on this problem, our approach has the novel feature that it does not require labeled training data from one of the classes. This property allows us to address the second domain adaptation problem, namely, multiclass anomaly rejection. Here, the goal is to design a classifier that has the option of assigning a "reject" label, indicating that the instance did not arise from a class present in the training data. We establish consistent learning strategies for both of these domain adaptation problems, which to our knowledge are the first of their kind. We also implement the class proportion estimation technique and demonstrate its performance on several benchmark data sets.Comment: Accepted to AISTATS 2014. 15 pages. 2 figure

    Coherent frequentism

    Full text link
    By representing the range of fair betting odds according to a pair of confidence set estimators, dual probability measures on parameter space called frequentist posteriors secure the coherence of subjective inference without any prior distribution. The closure of the set of expected losses corresponding to the dual frequentist posteriors constrains decisions without arbitrarily forcing optimization under all circumstances. This decision theory reduces to those that maximize expected utility when the pair of frequentist posteriors is induced by an exact or approximate confidence set estimator or when an automatic reduction rule is applied to the pair. In such cases, the resulting frequentist posterior is coherent in the sense that, as a probability distribution of the parameter of interest, it satisfies the axioms of the decision-theoretic and logic-theoretic systems typically cited in support of the Bayesian posterior. Unlike the p-value, the confidence level of an interval hypothesis derived from such a measure is suitable as an estimator of the indicator of hypothesis truth since it converges in sample-space probability to 1 if the hypothesis is true or to 0 otherwise under general conditions.Comment: The confidence-measure theory of inference and decision is explicitly extended to vector parameters of interest. The derivation of upper and lower confidence levels from valid and nonconservative set estimators is formalize
    • …
    corecore