3,375 research outputs found

    A bio-plausible design for visual attitude stabilization

    Get PDF
    We consider the problem of attitude stabilization using exclusively visual sensory input, and we look for a solution which can satisfy the constraints of a "bio-plausible" computation. We obtain a PD controller which is a bilinear form of the goal image, and the current and delayed visual input. Moreover, this controller can be learned using classic neural networks algorithms. The structure of the resulting computation, derived from general principles by imposing a bilinear computation, has striking resemblances with existing models for visual information processing in insects (Reichardt Correlators and lobula plate tangential cells). We validate the algorithms using faithful simulations of the fruit fly visual input

    A bio-plausible design for visual attitude stabilization

    Get PDF
    We consider the problem of attitude stabilization using exclusively visual sensory input, and we look for a solution which can satisfy the constraints of a "bio-plausible" computation. We obtain a PD controller which is a bilinear form of the goal image, and the current and delayed visual input. Moreover, this controller can be learned using classic neural networks algorithms. The structure of the resulting computation, derived from general principles by imposing a bilinear computation, has striking resemblances with existing models for visual information processing in insects (Reichardt Correlators and lobula plate tangential cells). We validate the algorithms using faithful simulations of the fruit fly visual input

    Visual Feedback Without Geometric Features Against Occlusion: A Walsh Basis

    Get PDF
    Date of Online Publication: 09 January 2018For a visual feedback without geometric features, this brief suggests to apply a basis made by the Walsh functions in order to reduce the off-line experimental cost. Depending on the resolution, the feedback is implementable and achieves the closed-loop stability of dynamical systems as long as the input-output linearity on matrix space exists. Remarkably, a part of the whole occlusion effects is rejected, and the remaining part is attenuated. The validity is confirmed by the experimental feedback for nonplanar sloshing

    Learning Pose Estimation for UAV Autonomous Navigation and Landing Using Visual-Inertial Sensor Data

    Get PDF
    In this work, we propose a robust network-in-the-loop control system for autonomous navigation and landing of an Unmanned-Aerial-Vehicle (UAV). To estimate the UAV’s absolute pose, we develop a deep neural network (DNN) architecture for visual-inertial odometry, which provides a robust alternative to traditional methods. We first evaluate the accuracy of the estimation by comparing the prediction of our model to traditional visual-inertial approaches on the publicly available EuRoC MAV dataset. The results indicate a clear improvement in the accuracy of the pose estimation up to 25% over the baseline. Finally, we integrate the data-driven estimator in the closed-loop flight control system of Airsim, a simulator available as a plugin for Unreal Engine, and we provide simulation results for autonomous navigation and landing

    Bootstrapping bilinear models of robotic sensorimotor cascades

    Get PDF
    We consider the bootstrapping problem, which consists in learning a model of the agent's sensors and actuators starting from zero prior information, and we take the problem of servoing as a cross-modal task to validate the learned models. We study the class of bilinear dynamics sensors, in which the derivative of the observations are a bilinear form of the control commands and the observations themselves. This class of models is simple yet general enough to represent the main phenomena of three representative robotics sensors (field sampler, camera, and range-finder), apparently very different from one another. It also allows a bootstrapping algorithm based on hebbian learning, and that leads to a simple and bioplausible control strategy. The convergence properties of learning and control are demonstrated with extensive simulations and by analytical arguments

    SO(3)-invariant asymptotic observers for dense depth field estimation based on visual data and known camera motion

    Full text link
    In this paper, we use known camera motion associated to a video sequence of a static scene in order to estimate and incrementally refine the surrounding depth field. We exploit the SO(3)-invariance of brightness and depth fields dynamics to customize standard image processing techniques. Inspired by the Horn-Schunck method, we propose a SO(3)-invariant cost to estimate the depth field. At each time step, this provides a diffusion equation on the unit Riemannian sphere that is numerically solved to obtain a real time depth field estimation of the entire field of view. Two asymptotic observers are derived from the governing equations of dynamics, respectively based on optical flow and depth estimations: implemented on noisy sequences of synthetic images as well as on real data, they perform a more robust and accurate depth estimation. This approach is complementary to most methods employing state observers for range estimation, which uniquely concern single or isolated feature points.Comment: Submitte

    Development of a Generic Time-to-Contact Pilot Guidance Model

    Get PDF
    The time-to-contact ττ theory posits that purposeful actions can be conducted by coupling the actor’s motion onto the so-called ττ guides generated internally by their central nervous system. Although significant advances have been made in the application of ττ for flight control purposes, little research has been conducted to investigate how pilots are able to adapt their ττ-guidance strategy to different aircraft dynamics, or how a ττ-guide-based pilot–aircraft model might be used to represent control behavior. This paper reports on the development of such a model to characterize the adaptation of pilot guidance to variations in aircraft dynamics using data obtained from a clinical pilot-in-the-loop flight simulation experiment. The results indicate that pilots tend to maintain a constant coupling between the dynamic system’s motion and the ττ guide across a range of different configuration parameters. Simultaneously, the pilot modulates the guidance maneuver period to adapt to these different aircraft dynamics that result in changes in workload. Modeling the complete pilot stabilization and guidance function as a regulator plus inverter yields good comparative results between the pilot–aircraft model and simulator trajectory data, and it supports the hypothesis that the following ττ-based guidance strategies suppress an aircraft’s natural dynamics

    Climate change and mixed forests: how do altered survival probabilities impact economically desirable species proportions of Norway spruce and European beech?

    Get PDF
    International audienceKey message Economic consequences of altered survival probabilities under climate change should be considered for regeneration planning in Southeast Germany. Findings suggest that species compositions of mixed stands obtained from continuous optimization may buffer but not completely mitigate economic consequences. Mixed stands of Norway spruce (Picea abiesL. Karst.) and European beech (Fagus sylvaticaL.) (considering biophysical interactions between tree species) were found to be more robust, against both perturbations in survival probabilities and economic input variables, compared to block mixtures (excluding biophysical interactions).ContextClimate change is expected to increase natural hazards in European forests. Uncertainty in expected tree mortality and resulting potential economic consequences complicate regeneration decisions.AimsThis study aims to analyze the economic consequences of altered survival probabilities for mixing Norway spruce (Picea abies L. Karst.) and European beech (Fagus sylvatica L.) under different climate change scenarios. We investigate whether management strategies such as species selection and type of mixture (mixed stands vs. block mixture) could mitigate adverse financial effects of climate change.MethodsThe bio-economic modelling approach combines a parametric survival model with modern portfolio theory. We estimate the economically optimal species mix under climate change, accounting for the biophysical and economic effects of tree mixtures. The approach is demonstrated using an example from Southeast Germany.ResultsThe optimal tree species mixtures under simulated climate change effects could buffer but not completely mitigate undesirable economic consequences. Even under optimally mixed forest stands, the risk-adjusted economic value decreased by 28%. Mixed stands economically outperform block mixtures for all climate scenarios.ConclusionOur results underline the importance of mixed stands to mitigate the economic consequences of climate change. Mechanistic bio-economic models help to understand consequences of uncertain input variables and to design purposeful adaptation strategies

    A hovercraft robot that uses insect-inspired visual autocorrelation for motion control in a corridor

    Get PDF
    Abstract-In this paper we are concerned with the challenge of flight control of computationally-constrained micro-aerial vehicles that must rely primarily on vision to navigate confined spaces. We turn to insects for inspiration. We demonstrate that it is possible to control a robot with inertial, flight-like dynamics in the plane using insect-inspired visual autocorrelators or "elementary motion detectors" (EMDs) to detect patterns of visual optic flow. The controller, which requires minimal computation, receives visual information from a small omnidirectional array of visual sensors and computes thrust outputs for a fan pair to stabilize motion along the centerline of a corridor. To design the controller, we provide a frequencydomain analysis of the response of an array of correlators to a flat moving wall. The model incorporates the effects of motion parallax and perspective and provides a means for computing appropriate inter-sensor angular spacing and visual blurring. The controller estimates the state of robot motion by decomposing the correlator response into harmonics, an analogous operation to that performed by tangential cells in the fly. This work constitutes the first-known demonstration of control of non-kinematic inertial dynamics using purely correlators
    • 

    corecore