7 research outputs found

    Characterizations of the set of integer points in an integral bisubmodular polyhedron

    Full text link
    In this note, we provide two characterizations of the set of integer points in an integral bisubmodular polyhedron. Our characterizations do not require the assumption that a given set satisfies the hole-freeness, i.e., the set of integer points in its convex hull coincides with the original set. One is a natural multiset generalization of the exchange axiom of a delta-matroid, and the other comes from the notion of the tangent cone of an integral bisubmodular polyhedron.Comment: 9 page

    The Number of Nowhere-Zero Flows on Graphs and Signed Graphs

    Get PDF
    A nowhere-zero kk-flow on a graph Γ\Gamma is a mapping from the edges of Γ\Gamma to the set \{\pm1, \pm2, ..., \pm(k-1)\} \subset \bbZ such that, in any fixed orientation of Γ\Gamma, at each node the sum of the labels over the edges pointing towards the node equals the sum over the edges pointing away from the node. We show that the existence of an \emph{integral flow polynomial} that counts nowhere-zero kk-flows on a graph, due to Kochol, is a consequence of a general theory of inside-out polytopes. The same holds for flows on signed graphs. We develop these theories, as well as the related counting theory of nowhere-zero flows on a signed graph with values in an abelian group of odd order. Our results are of two kinds: polynomiality or quasipolynomiality of the flow counting functions, and reciprocity laws that interpret the evaluations of the flow polynomials at negative integers in terms of the combinatorics of the graph.Comment: 17 pages, to appear in J. Combinatorial Th. Ser.

    Menger's Theorem in bidirected graphs

    Full text link
    Bidirected graphs are a generalisation of directed graphs that arises in the study of undirected graphs with perfect matchings. Menger's famous theorem - the minimum size of a set separating two vertex sets XX and YY is the same as the maximum number of disjoint paths connecting them - is generally not true in bidirected graphs. We introduce a sufficient condition for XX and YY which yields a version of Menger's Theorem in bidirected graphs that in particular implies its directed counterpart.Comment: 23 pages, 6 figure

    Decomposition-based methods for Connectivity Augmentation Problems

    Get PDF
    In this thesis, we study approximation algorithms for Connectivity Augmentation and related problems. In the Connectivity Augmentation problem, one is given a base graph G=(V,E) that is k-edge-connected, and an additional set of edges L⊆V×VL \subseteq V\times V that we refer to as links. The task is to find a minimum cost subset of links F⊆LF \subseteq L such that adding F to G makes the graph (k+1)-edge-connected. We first study a special case when k=1, which is equivalent to the Tree Augmentation problem. We present a breakthrough result by Adjiashvili that gives an approximation algorithm for Tree Augmentation with approximation guarantee below 2, under the assumption that the cost of every link ℓ∈L\ell \in L is bounded by a constant. The algorithm is based on an elegant decomposition based method and uses a novel linear programming relaxation called the γ\gamma -bundle LP. We then present a subsequent result by Fiorini, Gross, Konemann and Sanita who give a 3/2+ϵ3/2+\epsilon approximation algorithm for the same problem. This result uses what are known as Chvatal-Gomory cuts to strengthen the linear programming relaxation used by Adjiashvili, and uses results from the theory of binet matrices to give an improved algorithm that is able to attain a significantly better approximation ratio. Next, we look at the special case when k=2. This case is equivalent to what is known as the Cactus Augmentation problem. A recent result by Cecchetto, Traub and Zenklusen give a 1.393-approximation algorithm for this problem using the same decomposition based algorithmic framework given by Adjiashvili. We present a slightly weaker result that uses the same ideas and obtains a 3/2+ϵ3/2+\epsilon approximation ratio for the Cactus Augmentation problem. Next, we take a look at the integrality ratio of the natural linear programming relaxation for Tree Augmentation, and present a result by Nutov that bounds this integrality gap by 28/15. Finally, we study the related Forest Augmentation problem that is a generalization of Tree Augmentation. There is no approximation algorithm for Forest Augmentation known that obtains an approximation ratio below 2. We show that we can obtain a 29/15-approximation algorithm for Forest Augmentation under the assumption that the LP solution is half-integral via a reduction to Tree Augmentation. We also study the structure of extreme points of the natural linear programming relaxation for Forest Augmentation and prove several properties that these extreme points satisfy

    Recognition of generalized network matrices

    Full text link
    In this PhD thesis, we deal with binet matrices, an extension of network matrices. The main result of this thesis is the following. A rational matrix A of size n times m can be tested for being binet in time O(n^6 m). If A is binet, our algorithm outputs a nonsingular matrix B and a matrix N such that [B N] is the node-edge incidence matrix of a bidirected graph (of full row rank) and A=B^{-1} N. Furthermore, we provide some results about Camion bases. For a matrix M of size n times m', we present a new characterization of Camion bases of M, whenever M is the node-edge incidence matrix of a connected digraph (with one row removed). Then, a general characterization of Camion bases as well as a recognition procedure which runs in O(n^2m') are given. An algorithm which finds a Camion basis is also presented. For totally unimodular matrices, it is proven to run in time O((nm)^2) where m=m'-n. The last result concerns specific network matrices. We give a characterization of nonnegative {r,s}-noncorelated network matrices, where r and s are two given row indexes. It also results a polynomial recognition algorithm for these matrices.Comment: 183 page

    Structural and decomposition results for binet matrices, bidirected graphs and signed-graphic matroids.

    Get PDF
    In this thesis we deal with binet matrices and the class of signed-graphic matroids which is the class of matroids represented over R by binet matrices. The thesis is divided in three parts. In the first part, we provide the vast majority of the notions used throughout the thesis and some results regarding the class of binet matrices. In this part, we focus on the class of linear and integer programming problems in which the constraint matrix is binet and provide methods and algorithms which solve these problems efficiently. The main new result is that the existing combinatorial methods can not solve the {lcub}0, 1/2{rcub}-separation problem (special case of the well known separation problem) with integral binet matrices. The main new results of the whole thesis are provided in the next two parts. In the second part, we present a polynomial time algorithm to construct a bidirected graph for any totally unimodular matrix B by finding node-edge incidence matrices Q and S such that QB = S. Seymour's famous decomposition theorem for regular matroids states that any totally unimodular matrix can be constructed through a series of composition operations called k-sums starting from network matrices and their transposes and two compact representation matrices B1 and B2 of a certain ten element matroid. Given that B1 and B2 are binet matrices, we examine the k-sums of network and binet matrices (k = 1,2, 3). It is shown that the k-sum of a network and a binet matrix is a binet matrix, but binet matrices are not closed under this operation for k = 2, 3. A new class of matrices is introduced, the so-called tour matrices, which generalises network and totally unimodular matrices. For any such matrix there exists a bidirected graph such that the columns represent a collection of closed tours in the graph. It is shown that tour matrices are closed under 1-, 2- and 3-sum as well as under elementary operations on their rows and columns. Given the constructive proofs of the above results regarding the k-sum operations and existing recognition algorithms for network and binet matrices, an algorithm is presented which constructs a bidirected graph for any totally unimodular matrix. In the third part of this thesis we deal with the frame matroid of a signed graph, or simply the signed-graphic matroid. Several new results are provided in this last part of the thesis. Specifically, given a signed graph, we provide methods to find representation matrices of the associated signed-graphic matroid over GF(2), GF(3) and R. Furthermore, two new matroid recognition algorithms are presented in this last part. The first one determines whether a binary matroid is signed-graphic or not and the second one determines whether a (general) matroid is binary signed-graphic or not. Finally, one of the most important new results of this thesis is the decomposition theory for the class of binary signed-graphic matroids which is provided in the last chapter. In order to achieve this result, we employed Tutte's theory of bridges. The proposed decomposition differs from previous decomposition results on matroids that have appeared in the literature in the sense that it is not based on k-sums, but rather on the operation of deletion of a cocircuit. Specifically, it is shown that certain minors resulting from the deletion of a cocircuit of a binary matroid will be graphic matroids except for one that will be signed-graphic if and only if the matroid is signed-graphic. The decomposition theory for binary signed-graphic matroids is a joint work with G. Appa and L. Pitsoulis
    corecore