9,423 research outputs found

    A batch scheduler with high level components

    Get PDF
    In this article we present the design choices and the evaluation of a batch scheduler for large clusters, named OAR. This batch scheduler is based upon an original design that emphasizes on low software complexity by using high level tools. The global architecture is built upon the scripting language Perl and the relational database engine Mysql. The goal of the project OAR is to prove that it is possible today to build a complex system for ressource management using such tools without sacrificing efficiency and scalability. Currently, our system offers most of the important features implemented by other batch schedulers such as priority scheduling (by queues), reservations, backfilling and some global computing support. Despite the use of high level tools, our experiments show that our system has performances close to other systems. Furthermore, OAR is currently exploited for the management of 700 nodes (a metropolitan GRID) and has shown good efficiency and robustness

    A batch scheduler with high level components

    Get PDF
    International audienceIn this article we present the design choices and the evaluation of a batch scheduler for large clusters, named OAR. This batch scheduler is based upon an original design that emphasizes on low software complexity by using high level tools. The global architecture is built upon the scripting language Perl and the relational database engine Mysql. The goal of the project OAR is to prove that it is possible today to build a complex system for ressource management using such tools without sacrificing efficiency and scalability. Currently, our system offers most of the important features implemented by other batch schedulers such as priority scheduling (by queues), reservations, backfilling and some global computing support. Despite the use of high level tools, our experiments show that our system has performances close to other systems. Furthermore, OAR is currently exploited for the management of 700 nodes (a metropolitan GRID) and has shown good efficiency and robustness

    Lessons Learned from a Decade of Providing Interactive, On-Demand High Performance Computing to Scientists and Engineers

    Full text link
    For decades, the use of HPC systems was limited to those in the physical sciences who had mastered their domain in conjunction with a deep understanding of HPC architectures and algorithms. During these same decades, consumer computing device advances produced tablets and smartphones that allow millions of children to interactively develop and share code projects across the globe. As the HPC community faces the challenges associated with guiding researchers from disciplines using high productivity interactive tools to effective use of HPC systems, it seems appropriate to revisit the assumptions surrounding the necessary skills required for access to large computational systems. For over a decade, MIT Lincoln Laboratory has been supporting interactive, on-demand high performance computing by seamlessly integrating familiar high productivity tools to provide users with an increased number of design turns, rapid prototyping capability, and faster time to insight. In this paper, we discuss the lessons learned while supporting interactive, on-demand high performance computing from the perspectives of the users and the team supporting the users and the system. Building on these lessons, we present an overview of current needs and the technical solutions we are building to lower the barrier to entry for new users from the humanities, social, and biological sciences.Comment: 15 pages, 3 figures, First Workshop on Interactive High Performance Computing (WIHPC) 2018 held in conjunction with ISC High Performance 2018 in Frankfurt, German
    • …
    corecore