678 research outputs found

    Compressing Word Embeddings

    Full text link
    Recent methods for learning vector space representations of words have succeeded in capturing fine-grained semantic and syntactic regularities using vector arithmetic. However, these vector space representations (created through large-scale text analysis) are typically stored verbatim, since their internal structure is opaque. Using word-analogy tests to monitor the level of detail stored in compressed re-representations of the same vector space, the trade-offs between the reduction in memory usage and expressiveness are investigated. A simple scheme is outlined that can reduce the memory footprint of a state-of-the-art embedding by a factor of 10, with only minimal impact on performance. Then, using the same `bit budget', a binary (approximate) factorisation of the same space is also explored, with the aim of creating an equivalent representation with better interpretability.Comment: 10 pages, 0 figures, submitted to ICONIP-2016. Previous experimental results were submitted to ICLR-2016, but the paper has been significantly updated, since a new experimental set-up worked much bette

    A Deep Learning Approach to Structured Signal Recovery

    Full text link
    In this paper, we develop a new framework for sensing and recovering structured signals. In contrast to compressive sensing (CS) systems that employ linear measurements, sparse representations, and computationally complex convex/greedy algorithms, we introduce a deep learning framework that supports both linear and mildly nonlinear measurements, that learns a structured representation from training data, and that efficiently computes a signal estimate. In particular, we apply a stacked denoising autoencoder (SDA), as an unsupervised feature learner. SDA enables us to capture statistical dependencies between the different elements of certain signals and improve signal recovery performance as compared to the CS approach

    Gated networks: an inventory

    Get PDF
    Gated networks are networks that contain gating connections, in which the outputs of at least two neurons are multiplied. Initially, gated networks were used to learn relationships between two input sources, such as pixels from two images. More recently, they have been applied to learning activity recognition or multi-modal representations. The aims of this paper are threefold: 1) to explain the basic computations in gated networks to the non-expert, while adopting a standpoint that insists on their symmetric nature. 2) to serve as a quick reference guide to the recent literature, by providing an inventory of applications of these networks, as well as recent extensions to the basic architecture. 3) to suggest future research directions and applications.Comment: Unpublished manuscript, 17 page
    • …
    corecore