7 research outputs found

    Well-balanced finite difference WENO schemes for the blood flow model

    Get PDF
    The blood flow model maintains the steady state solutions, in which the flux gradients are non-zero but exactly balanced by the source term. In this paper, we design high order finite difference weighted non-oscillatory (WENO) schemes to this model with such well-balanced property and at the same time keeping genuine high order accuracy. Rigorous theoretical analysis as well as extensive numerical results all indicate that the resulting schemes verify high order accuracy, maintain the well-balanced property, and keep good resolution for smooth and discontinuous solutions

    A Well-Balanced Symplecticity-Preserving Gas-Kinetic Scheme for Hydrodynamic Equations Under Gravitational Field

    No full text
    A well-balanced scheme for an isolated gravitational hydrodynamic system is defined as a scheme which exactly preserves an isothermal hydrostatic solution. In this paper, a well-balanced gas-kinetic symplecticity-preserving BGK (SP-BGK) scheme is developed. In the construction of the scheme, the gravitational potential is modeled as a piecewise constant function inside each cell with a potential jump at the cell interface. In the process of designing such a scheme, the energy conservation, Liouville's theorem, and the symplecticity-preserving property of a Hamiltonian flow play important roles in the description of particles penetration and reflection from a potential barrier. More importantly, the use of the symplecticity-preserving property is crucial in the evaluation of the moments of a postinteraction gas distribution function with a potential jump in terms of the moments of preinteraction distribution function. The SP-BGK method is the first well-balanced shock-capturing gas-kinetic scheme for the Navier-Stokes equation. A few theorems are proved for this scheme, which include the necessity to use an exact Maxwellian for keeping the isothermal hydrostatic state, the total mass and energy (the sum of kinetic, thermal, and gravitational ones) conservation, and the well-balanced property of the SP-BGK scheme to keep an isothermal hydrostatic state during the process of particle transport and collision. Many numerical examples are presented to validate the SP-BGK scheme

    A Well-Balanced Symplecticity-Preserving Gas-Kinetic Scheme for Hydrodynamic Equations under Gravitational Field

    No full text

    Ein Gas-Kinetic Scheme Ansatz zur Modellierung und Simulation von Feuer auf massiv paralleler Hardware

    Get PDF
    This work presents a simulation approach based on a Gas Kinetic Scheme (GKS) for the simulation of fire that is implemented on massively parallel hardware in terms of Graphics Processing Units (GPU) in the framework of General Purpose computing on Graphics Processing Units (GPGPU). Gas kinetic schemes belong to the class of kinetic methods because their governing equation is the mesoscopic Boltzmann equation, rather than the macroscopic Navier-Stokes equations. Formally, kinetic methods have the advantage of a linear advection term which simplifies discretization. GKS inherently contains the full energy equation which is required for compressible flows. GKS provides a flux formulation derived from kinetic theory and is usually implemented as a finite volume method on cell-centered grids. In this work, we consider an implementation on nested Cartesian grids. To that end, a coupling algorithm for uniform grids with varying resolution was developed and is presented in this work. The limitation to local uniform Cartesian grids allows an efficient implementation on GPUs, which belong to the class of many core processors, i.e. massively parallel hardware. Multi-GPU support is also implemented and efficiency is enhanced by communication hiding. The fluid solver is validated for several two- and three-dimensional test cases including natural convection, turbulent natural convection and turbulent decay. It is subsequently applied to a study of boundary layer stability of natural convection in a cavity with differentially heated walls and large temperature differences. The fluid solver is further augmented by a simple combustion model for non-premixed flames. It is validated by comparison to experimental data for two different fire plumes. The results are further compared to the industry standard for fire simulation, i.e. the Fire Dynamics Simulator (FDS). While the accuracy of GKS appears slightly reduced as compared to FDS, a substantial speedup in terms of time to solution is found. Finally, GKS is applied to the simulation of a compartment fire. This work shows that the GKS has a large potential for efficient high performance fire simulations.Diese Arbeit präsentiert einen Simulationsansatz basierend auf einer gaskinetischen Methode (eng. Gas Kinetic Scheme, GKS) zur Simulation von Bränden, welcher für massiv parallel Hardware im Sinne von Grafikprozessoren (eng. Graphics Processing Units, GPUs) implementiert wurde. GKS gehört zur Klasse der kinetischen Methoden, die nicht die makroskopischen Navier-Stokes Gleichungen, sondern die mesoskopische Boltzmann Gleichung lösen. Formal haben kinetische Methoden den Vorteil, dass der Advektionsterms linear ist. Dies vereinfacht die Diskretisierung. In GKS ist die vollständige Energiegleichung, die zur Lösung kompressibler Strömungen benötigt wird, enthalten. GKS formuliert den Fluss von Erhaltungsgrößen basierend auf der gaskinetischen Theorie und wird meistens im Rahmen der Finiten Volumen Methode umgesetzt. In dieser Arbeit betrachten wir eine Implementierung auf gleichmäßigen Kartesischen Gittern. Dazu wurde ein Kopplungsalgorithmus für die Kombination von Gittern unterschiedlicher Auflösung entwickelt. Die Einschränkung auf lokal gleichmäßige Gitter erlaubt eine effiziente Implementierung auf GPUs, welche zur Klasse der massiv parallelen Hardware gehören. Des Weiteren umfasst die Implementierung eine Unterstützung für Multi-GPU mit versteckter Kommunikation. Der Strömungslöser ist für zwei und dreidimensionale Testfälle validiert. Dabei reichen die Tests von natürlicher Konvektion über turbulente Konvektion bis hin zu turbulentem Zerfall. Anschließend wird der Löser genutzt um die Grenzschichtstabilität in natürlicher Konvektion bei großen Temperaturunterschieden zu untersuchen. Darüber hinaus umfasst der Löser ein einfaches Verbrennungsmodell für Diffusionsflammen. Dieses wird durch Vergleich mit experimentellen Feuern validiert. Außerdem werden die Ergebnisse mit dem gängigen Brandsimulationsprogramm FDS (eng. Fire Dynamics Simulator) verglichen. Die Qualität der Ergebnisse ist dabei vergleichbar, allerdings ist der in dieser Arbeit entwickelte Löser deutlich schneller. Anschließend wird das GKS noch für die Simulation eines Raumbrandes angewendet. Diese Arbeit zeigt, dass GKS ein großes Potential für die Hochleistungssimulation von Feuer hat
    corecore