6 research outputs found

    A WINNER+ Based 3-D Non-Stationary Wideband MIMO Channel Model

    Full text link
    In this paper, a three-dimensional (3-D) non-stationary wideband multiple-input multiple-output (MIMO) channel model based on the WINNER+ channel model is proposed. The angular distributions of clusters in both the horizontal and vertical planes are jointly considered. The receiver and clusters can be moving, which makes the model more general. Parameters including number of clusters, powers, delays, azimuth angles of departure (AAoDs), azimuth angles of arrival (AAoAs), elevation angles of departure (EAoDs), and elevation angles of arrival (EAoAs) are time-variant. The cluster time evolution is modeled using a birth-death process. Statistical properties, including spatial cross-correlation function (CCF), temporal autocorrelation function (ACF), Doppler power spectrum density (PSD), level-crossing rate (LCR), average fading duration (AFD), and stationary interval are investigated and analyzed. The LCR, AFD, and stationary interval of the proposed channel model are validated against the measurement data. Numerical and simulation results show that the proposed channel model has the ability to reproduce the main properties of real non-stationary channels. Furthermore, the proposed channel model can be adapted to various communication scenarios by adjusting different parameter values

    Optimizing the Age-of-Information for Mobile Users in Adversarial and Stochastic Environments

    Full text link
    We study a multi-user downlink scheduling problem for optimizing the freshness of information available to users roaming across multiple cells. We consider both adversarial and stochastic settings and design scheduling policies that optimize two distinct information freshness metrics, namely the average age-of-information and the peak age-of-information. We show that a natural greedy scheduling policy is competitive with the optimal offline policy in the adversarial setting. We also derive fundamental lower bounds to the competitive ratio achievable by any online policy. In the stochastic environment, we show that a Max-Weight scheduling policy that takes into account the channel statistics achieves an approximation factor of 22 for minimizing the average age of information in two extreme mobility scenarios. We conclude the paper by establishing a large-deviation optimality result achieved by the greedy policy for minimizing the peak age of information for static users situated at a single cell.Comment: arXiv admin note: text overlap with arXiv:2001.0547

    A WINNER+ Based 3-D Non-Stationary Wideband MIMO Channel Model

    No full text

    A WINNER+ Based 3-D Non-Stationary Wideband MIMO Channel Model

    No full text
    corecore