2,026 research outputs found

    An integrated environment for problem solving and program development

    Get PDF
    A framework for an integrated problem solving and program development environment that addresses the needs of students learning programming is proposed. Several objectives have been accomplished: defining the tasks required for program development and a literature review to determine the actual difficulties involved in learning those tasks. A comprehensive Study of environments and tools developed to support the learning of problem solving and programming was then performed, covering programming environments, debugging aids, intelligent tutoring systems, and intelligent programming environments. This was followed by a careful analysis and critique of these systems, which uncovered the limitations that have prevented them from accomplishing their goals. Next, an extensive study of problem solving methodologies developed in this century was carried out and a common model for problem solving was produced. The tasks of program development were then integrated with the common model for problem solving. Then, the cognitive activities required for problem solving and program development were identified and also integrated with the common model to form a Dual Common Model for problem Solving and Program Development. This dual common model was then used to define the functional specifications for a problem solving and program development environment which was designed, implemented, tested, and integrated into the curriculum. The development of the new environment for learning problem solving and programming was followed by the planning of a cognitively oriented assessment method and the development of related instruments to evaluate the process and the product of problem solving. A detailed statistical experiment to study the effect of this environment on students\u27 problem solving and program development skills, including system testing by protocol analysis, and performance evaluation of students based on research hypotheses and questions, was also designed, implemented and the result reported

    Semantics of reactive systems : comparison and full abstraction

    Get PDF

    A compositional semantics for statecharts

    Get PDF

    Formally-based tools and techniques for human-computer dialogues

    Get PDF
    With ever cheaper and more powerful technology. the proliferation of computer systems, and higher expectations of their users, the user interface is now seen as a crucial part of any interactive system. As the designers and users of interactive software have found, though, it can be both difficult and costly to create good interactive software. It is therefore appropriate to look at ways of "engineering" the interface as well as the application. which we choose to do by using the software engineering techniques of specification and prototyping. Formally specifying the user interface allows the designer to reason about its properties in the light of the many guidelines on the subject. Early availability of prototypes of the user interface allows the designer to experiment with alternative options and to elicit feedback from potential users. This thesis presents tools and techniques (collectively called SPI for specifying and prototyping the dialogues between an interactive system and its users. They are based on a formal specification and rapid prototyping method and notation called me too. and were originally designed as an extension to me too. They have also been implemented under UNIX*. thus enabling a transition from the formal specification to its implementation. *UNIX is a trademark of AT&T Bell Laboratorie

    Specifying message passing systems requires extending temporal logic

    Get PDF

    Categorical Ontology of Complex Systems, Meta-Systems and Theory of Levels: The Emergence of Life, Human Consciousness and Society

    Get PDF
    Single cell interactomics in simpler organisms, as well as somatic cell interactomics in multicellular organisms, involve biomolecular interactions in complex signalling pathways that were recently represented in modular terms by quantum automata with ‘reversible behavior’ representing normal cell cycling and division. Other implications of such quantum automata, modular modeling of signaling pathways and cell differentiation during development are in the fields of neural plasticity and brain development leading to quantum-weave dynamic patterns and specific molecular processes underlying extensive memory, learning, anticipation mechanisms and the emergence of human consciousness during the early brain development in children. Cell interactomics is here represented for the first time as a mixture of ‘classical’ states that determine molecular dynamics subject to Boltzmann statistics and ‘steady-state’, metabolic (multi-stable) manifolds, together with ‘configuration’ spaces of metastable quantum states emerging from complex quantum dynamics of interacting networks of biomolecules, such as proteins and nucleic acids that are now collectively defined as quantum interactomics. On the other hand, the time dependent evolution over several generations of cancer cells --that are generally known to undergo frequent and extensive genetic mutations and, indeed, suffer genomic transformations at the chromosome level (such as extensive chromosomal aberrations found in many colon cancers)-- cannot be correctly represented in the ‘standard’ terms of quantum automaton modules, as the normal somatic cells can. This significant difference at the cancer cell genomic level is therefore reflected in major changes in cancer cell interactomics often from one cancer cell ‘cycle’ to the next, and thus it requires substantial changes in the modeling strategies, mathematical tools and experimental designs aimed at understanding cancer mechanisms. Novel solutions to this important problem in carcinogenesis are proposed and experimental validation procedures are suggested. From a medical research and clinical standpoint, this approach has important consequences for addressing and preventing the development of cancer resistance to medical therapy in ongoing clinical trials involving stage III cancer patients, as well as improving the designs of future clinical trials for cancer treatments.\ud \ud \ud KEYWORDS: Emergence of Life and Human Consciousness;\ud Proteomics; Artificial Intelligence; Complex Systems Dynamics; Quantum Automata models and Quantum Interactomics; quantum-weave dynamic patterns underlying human consciousness; specific molecular processes underlying extensive memory, learning, anticipation mechanisms and human consciousness; emergence of human consciousness during the early brain development in children; Cancer cell ‘cycling’; interacting networks of proteins and nucleic acids; genetic mutations and chromosomal aberrations in cancers, such as colon cancer; development of cancer resistance to therapy; ongoing clinical trials involving stage III cancer patients’ possible improvements of the designs for future clinical trials and cancer treatments. \ud \u

    Embodiment and Grammatical Structure: An Approach to the Relation of Experience, Assertion and Truth

    Get PDF
    In this thesis I address a concern in both existential phenomenology and embodied cognition, namely, the question of how ‘higher’ cognitive abilities such as language and judgements of truth relate to embodied experience. I suggest that although our words are grounded in experience, what makes this grounding and our higher abilities possible is grammatical structure. The opening chapter contrasts the ‘situated’ approach of embodied cognition and existential phenomenology with Cartesian methodological solipsism. The latter produces a series of dualisms, including that of language and meaning, whereas the former dissolves such dualisms. The second chapter adapts Merleau-Ponty’s arguments against the perceptual constancy hypothesis in order to undermine the dualism of grammar and meaning. This raises the question of what grammar is, which is addressed in the third chapter. I acknowledge the force of Chomsky’s observation that language is structure dependent and briefly introduce a minimal grammatical operation which might be the ‘spark which lit the intellectual forest fire’ (Clark: 2001, 151). Grammatical relations are argued to make possible the grounding of our symbols in chapters 4 and 5, which attempt to ground the categories of determiner and aspect in spatial deixis and embodied motor processes respectively. Chapter 6 ties the previous three together, arguing that we may understand a given lexeme as an object or as an event by subsuming it within a determiner phrase or aspectualising it respectively. I suggest that such modification of a word’s meaning is possible because determiners and aspect schematise, i.e. determine the temporal structure, of the lexeme. Chapter 7 uses this account to take up Heidegger’s claim that the relation between being and truth be cast in terms of temporality (2006, H349), though falls short of providing a complete account of the ‘origin of truth’. Chapter 8 concludes and notes further avenues of research
    • 

    corecore